Laboratoire de Physique Théorique de l'École Normale Supérieure de Paris, CNRS, ENS & PSL Research University, UPMC & Sorbonne Universités, 75005 Paris, France.
Phys Rev E. 2017 Dec;96(6-1):062108. doi: 10.1103/PhysRevE.96.062108. Epub 2017 Dec 5.
Dynamical phase transitions are defined as nonanalytic points of the large deviation function of current fluctuations. We show that for boundary-driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.
动力学相变被定义为电流涨落的大偏差函数的非解析点。我们表明,对于边界驱动系统,可以使用从宏观涨落理论描述中恢复的哈密顿量有效势的几何结构来识别许多动力学相变。使用这种方法,我们识别了新的动力学相变,这些相变无法使用现有的微扰方法来恢复。此外,使用哈密顿量图像,我们提出了一个实验方案,以在线性而不是指数时间中演示动力学相变的类似物。