Suppr超能文献

非平衡和边界驱动系统的勒夏特列原理:在动态相变中的应用

Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions.

作者信息

Shpielberg O, Akkermans E

机构信息

Department of Physics, Technion Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Phys Rev Lett. 2016 Jun 17;116(24):240603. doi: 10.1103/PhysRevLett.116.240603.

Abstract

A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

摘要

在流体动力学宏观涨落理论框架下,对边界驱动和非平衡系统进行了稳定性分析。提出了一种哈密顿描述,它使我们能够从热力学角度解释加和原理。作为勒夏特列原理的扩展,得到了加和原理有效性的充要条件。这些稳定性条件源于使用累积量生成函数得到的对角二次型。这种方法使我们能够证明弱不对称排斥过程的稳定性,并将稳定性的寻找简化为求解两个耦合的线性常微分方程,而不是非线性偏微分方程。还讨论了这些结果在经典和量子系统领域的其他潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验