Suppr超能文献

基于经验社会网络的病毒传播机制建模与流行度预测。

Mechanistic modelling of viral spreading on empirical social network and popularity prediction.

机构信息

Department of Physics, National University of Singapore, Singapore, 117551, Singapore.

Computing Science Department, Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore.

出版信息

Sci Rep. 2018 Sep 3;8(1):13126. doi: 10.1038/s41598-018-31346-0.

Abstract

Online social networks are becoming major platforms for people to exchange opinions and information. While spreading models have been used to study the dynamics of spreading on social networks, the actual spreading mechanism on social networks may be different from these previous models due to users' limited attention and heterogeneous interests. The tractability of the spreading process in social networks allows us to develop a detailed and realistic model accounting for these factors. In addition, the empirical social networks have higher order correlations among node degrees, especially for directed networks like Twitter, that could affect the dynamics of spreading. Based on the analysis of the retweet process in the empirical Twitter network, we find both non-trivial correlations in network structures and non-standard spreading mechanisms for viral tweets. In particular, there is a strong evidence of information overload for retweeting behaviors that is not in line with the standard spreading model like the SIR (Susceptible, Infectious and Recovered) model, and can be described by a sublinear function. From these empirical findings, we introduce an intrinsic variable "attractiveness" to the message, describing the overall propensity for any node to retweet the message, and present the analytical equations to solve such an empirical process, validated through numerical simulations. The results from our model is consistent with findings from the empirical Twitter data. Our analysis also indicates a close relationship between the spreading sub-network structure and the final popularity of the information, leading to a method to predict the popularity of tweets more accurately than existing models.

摘要

在线社交网络正成为人们交流意见和信息的主要平台。虽然传播模型已被用于研究社交网络上的传播动态,但由于用户注意力有限和兴趣异质,社交网络上的实际传播机制可能与这些先前的模型不同。社交网络中传播过程的可处理性使我们能够开发一个详细且现实的模型,考虑到这些因素。此外,经验社交网络中节点度之间存在更高阶的相关性,特别是对于像 Twitter 这样的有向网络,这可能会影响传播的动态。基于对经验性 Twitter 网络中转发过程的分析,我们发现网络结构存在非平凡的相关性,并且病毒式推文的传播机制也不标准。特别是,有强烈的证据表明转发行为存在信息过载,这与标准的传播模型(如 SIR 模型)不一致,可以用次线性函数来描述。从这些经验发现中,我们为消息引入了一个内在变量“吸引力”,描述任何节点转发消息的总体倾向,并提出了分析方程来解决这种经验过程,通过数值模拟进行验证。我们模型的结果与经验性的 Twitter 数据相符。我们的分析还表明,传播子网络结构与信息的最终流行度之间存在密切关系,从而导致一种比现有模型更准确地预测推文流行度的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cb9/6120920/7367e0cf5ee3/41598_2018_31346_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验