Departamento de Matemáticas, Universidad de Oviedo, Campus de Viesques, 33203 Gijón, Spain.
Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
Phys Rev E. 2017 Oct;96(4-1):042208. doi: 10.1103/PhysRevE.96.042208. Epub 2017 Oct 17.
Fifty years ago Arthur Winfree proposed a deeply influential mean-field model for the collective synchronization of large populations of phase oscillators. Here we provide a detailed analysis of the model for some special, analytically tractable cases. Adopting the thermodynamic limit, we derive an ordinary differential equation that exactly describes the temporal evolution of the macroscopic variables in the Ott-Antonsen invariant manifold. The low-dimensional model is then thoroughly investigated for a variety of pulse types and sinusoidal phase response curves (PRCs). Two structurally different synchronization scenarios are found, which are linked via the mutation of a Bogdanov-Takens point. From our results, we infer a general rule of thumb relating pulse shape and PRC offset with each scenario. Finally, we compare the exact synchronization threshold with the prediction of the averaging approximation given by the Kuramoto-Sakaguchi model. At the leading order, the discrepancy appears to behave as an odd function of the PRC offset.
五十年前,Arthur Winfree 提出了一个对大规模相位振荡器群体同步具有深远影响的平均场模型。在这里,我们针对一些特殊的、可分析处理的情况,对模型进行了详细的分析。通过采用热力学极限,我们推导出一个可以精确描述 Ott-Antonsen 不变流形中宏观变量时间演化的常微分方程。然后,我们针对各种脉冲类型和正弦相位响应曲线 (PRC),对低维模型进行了深入研究。发现了两种结构不同的同步情况,它们通过 Bogdanov-Takens 点的突变相关联。从我们的结果中,我们推断出一个与脉冲形状和 PRC 偏移相关的一般经验法则,与每个场景相关联。最后,我们将精确的同步阈值与由 Kuramoto-Sakaguchi 模型给出的平均近似预测进行了比较。在领先阶次下,这种差异似乎是 PRC 偏移的奇函数。