Suppr超能文献

无序网络中的几何形状和刚性起始。

Geometry and the onset of rigidity in a disordered network.

机构信息

Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands.

Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands.

出版信息

Phys Rev E. 2017 Nov;96(5-1):053003. doi: 10.1103/PhysRevE.96.053003. Epub 2017 Nov 20.

Abstract

Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ^{★}, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.

摘要

当施加足够的应变时,协调不足的紊乱弹簧网络可能会突然变得僵硬。由于对施加应变的响应的变形不会改变网络结构的通用量词,即节点的数量和它们之间的键的数量,因此这种刚性转变必须具有几何起源。天真的,基于自由度的力学分析,如 Maxwell-Calladine 计数或卵石游戏算法,忽略了这种几何刚性转变,并且没有提供预测或描述它们的方法。我们将为正则晶格上的零模式和自应力状态的拓扑分析而开发的工具应用于二维随机弹簧网络,并证明了在有限的简单剪切应变 γ^{★}下的刚性开始与单一的自应力状态的出现以及单一的软模式同时发生。该过程保留了零模式数量和自应力状态数量之间的拓扑不变性差异,但赋予弹簧网络有限的剪切模量。超过临界剪切后,网络获得了高度各向异性的弹性模量,在刚性化剪切的方向上最强烈地抵抗进一步的变形。我们确认了先前报道的相应微分剪切模量的临界标度。在亚临界范围内,网络的兼容性矩阵的奇异值分解通过对应于初生自应力状态的连续消失的奇异值预示了刚性的开始。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验