Suppr超能文献

具有和不具有平衡的量子映射的随机热力学。

Stochastic thermodynamics of quantum maps with and without equilibrium.

机构信息

Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370449, Chile.

出版信息

Phys Rev E. 2017 Nov;96(5-1):052114. doi: 10.1103/PhysRevE.96.052114. Epub 2017 Nov 10.

Abstract

We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.

摘要

我们研究了一个与热浴相互作用的感兴趣量子系统的随机热力学,其动力学由完全正迹保(CPTP)映射描述。我们将平衡的 CPTP 映射定义为具有不变态的 CPTP 映射,使得由于映射对不变态的作用而产生的熵产生消失。热映射是平衡的 CPTP 映射的一个子群。一般来说,对于 CPTP 映射,热力学量,如系统上的熵产生或所做的功,取决于系统加环境的联合态。我们表明,这些量可以用具有平衡的映射的系统性质来表示。我们得到的关系对于系统与热浴之间的任意耦合强度都是有效的。我们在两点测量方案的框架内考虑热力学量的涨落。我们推导出一般映射的熵产生涨落定理和关于在吉布斯态下开始的系统的随机功的涨落关系。对于具有平衡的映射的情况下的概率分布,我们给出了一些简化。我们通过考虑热映射下的自旋 1/2 系统、具有平衡的非热映射、具有非平衡稳态的映射以及它们的串联来说明我们的结果。最后,作为一个重要的应用,我们考虑了一个特殊的极限,其中映射的串联以林德布拉德形式为感兴趣的系统生成连续时间演化,我们表明具有和没有平衡的映射概念分别转化为具有和没有量子详细平衡的林德布拉德方程。讨论了这个极限下热力学量的后果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验