The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden.
Phys Rev E. 2017 Nov;96(5-1):053111. doi: 10.1103/PhysRevE.96.053111. Epub 2017 Nov 22.
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
先前发展的[T. Elperin 等人,Phys. Rev. E 90, 053001 (2014) PLEEE81539-375510.1103/PhysRevE.90.053001]化学反应性气体混合物的紊流传质理论被推广到较大但有限的雷诺数,并且得到了紊流扩散系数对两个参数,即雷诺数和达克尔数(表征紊流和反应时间尺度之比)的依赖关系。对在强迫、均匀、各向同性和不可压缩紊流中传播的一级化学反应的有限厚度反应波进行了三维直接数值模拟(DNS),以验证化学反应对紊流扩散的理论预测效应。结果表明,所得到的 DNS 结果与所发展的理论吻合良好。