Zhong Wenyu, Chi Yuan, Yu Ruohan, Kong Charlie, Zhou Shujie, Han Chen, Vongsvivut Jitraporn, Mao Guangzhao, Kalantar-Zadeh Kourosh, Amal Rose, Tang Jianbo, Lu Xunyu
School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
Electron Microscope Unit, University of New South Wales, Sydney, NSW, 2052, Australia.
Small. 2024 Dec;20(49):e2403939. doi: 10.1002/smll.202403939. Epub 2024 Jul 30.
Copper-based catalysts exhibit high activity in electrochemical CO conversion to value-added chemicals. However, achieving precise control over catalysts design to generate narrowly distributed products remains challenging. Herein, a gallium (Ga) liquid metal-based approach is employed to synthesize hierarchical nanoporous copper (HNP Cu) catalysts with tailored ligament/pore and crystallite sizes. The nanoporosity and polycrystallinity are generated by dealloying intermetallic CuGa formed after immersing pristine Cu foil in liquid Ga in a basic or acidic solution. The liquid metal-based approach allows for the transformation of monocrystalline Cu to the polycrystalline HNP Cu with enhanced CO reduction reaction (CORR) performance. The dealloyed HNP Cu catalyst with suitable crystallite size (22.8 nm) and nanoporous structure (ligament/pore size of 45 nm) exhibits a high Faradaic efficiency of 91% toward formate production under an applied potential as low as -0.3 V. The superior CORR performance can be ascribed to the enlarged electrochemical catalytic surface area, the generation of preferred Cu facets, and the rich grain boundaries by polycrystallinity. This work demonstrates the potential of liquid metal-based synthesis for improving catalysts performance based on structural design, without increasing compositional complexity.
铜基催化剂在电化学将CO转化为增值化学品方面表现出高活性。然而,实现对催化剂设计的精确控制以生成分布狭窄的产物仍然具有挑战性。在此,采用基于镓(Ga)液态金属的方法来合成具有定制韧带/孔隙和微晶尺寸的分级纳米多孔铜(HNP Cu)催化剂。纳米孔隙率和多晶性是通过在碱性或酸性溶液中将原始铜箔浸入液态Ga后形成的金属间化合物CuGa脱合金化而产生的。基于液态金属的方法允许将单晶Cu转变为具有增强的CO还原反应(CORR)性能的多晶HNP Cu。具有合适微晶尺寸(22.8 nm)和纳米多孔结构(韧带/孔径为45 nm)的脱合金化HNP Cu催化剂在低至-0.3 V的外加电势下对甲酸盐生成表现出91%的高法拉第效率。优异的CORR性能可归因于扩大的电化学催化表面积、优选的Cu晶面的产生以及多晶性导致的丰富晶界。这项工作证明了基于液态金属的合成在不增加组成复杂性的情况下基于结构设计改善催化剂性能的潜力。