University of California, San Francisco Department of Psychiatry, 1550 4th Street, San Francisco, CA, 94158, USA.
Sci Rep. 2018 Jan 18;8(1):1064. doi: 10.1038/s41598-017-18276-z.
We report the development and validation of a principled analytical approach to reveal the manner in which diverse mouse home cage behaviors are organized. We define and automate detection of two mutually-exclusive low-dimensional spatiotemporal units of behavior: "Active" and "Inactive" States. Analyses of these features using a large multimodal 16-strain behavioral dataset provide a series of novel insights into how feeding, drinking, and movement behaviors are coordinately expressed in Mus Musculus. Moreover, we find that patterns of Active State expression are exquisitely sensitive to strain, and classical supervised machine learning incorporating these features provides 99% cross-validated accuracy in genotyping animals using behavioral data alone. Altogether, these findings advance understanding of the organization of spontaneous behavior and provide a high-throughput phenotyping strategy with wide applicability to behavioral neuroscience and animal models of disease.
我们报告了一种有原则的分析方法的开发和验证,该方法旨在揭示不同的小鼠笼内行为是如何组织的。我们定义并自动检测两种相互排斥的低维时空行为单元:“活跃”和“不活跃”状态。使用大型多模态 16 品系行为数据集对这些特征进行分析,为我们提供了一系列新的见解,了解摄食、饮水和运动行为在 Mus Musculus 中是如何协调表达的。此外,我们发现活跃状态表达模式对品系非常敏感,并且包含这些特征的经典监督机器学习方法仅使用行为数据对动物进行基因分型的准确率达到了 99%。总之,这些发现推进了对自发行为组织的理解,并提供了一种高通量表型分析策略,具有广泛的适用性,可用于行为神经科学和疾病动物模型。