Suppr超能文献

数字病理学中的图像分析与机器学习:挑战与机遇

Image analysis and machine learning in digital pathology: Challenges and opportunities.

作者信息

Madabhushi Anant, Lee George

机构信息

Department of Biomedical Engineering, Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH 44106-7207, United State.

Department of Biomedical Engineering, Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH 44106-7207, United State.

出版信息

Med Image Anal. 2016 Oct;33:170-175. doi: 10.1016/j.media.2016.06.037. Epub 2016 Jul 4.

Abstract

With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology.

摘要

随着全玻片扫描仪技术的兴起,大量组织玻片被数字化扫描、呈现和存档。虽然数字病理学对远程病理学、二次诊断和教育具有重大意义,但利用这种新的“大数据”来源进行图像计算也存在巨大的研究机会。众所周知,病理学图像中蕴含着基本的预后数据。从数字病理学玻片图像中挖掘“亚视觉”图像特征的能力,即病理学家可能无法通过视觉辨别出的特征,为更好地对疾病外观进行定量建模提供了机会,从而有可能改进对疾病侵袭性和患者预后的预测。然而,大型数字病理学数据在精准医学中带来的诱人机会也伴随着一系列计算挑战。先前在放射图像背景下开发的图像分析以及计算机辅助检测和诊断工具,在处理高分辨率数字化全玻片图像的数据密度方面严重不足。此外,最近人们对将放射成像与基于蛋白质组学和基因组学的测量结果,与从数字病理学图像中提取的特征进行组合和融合产生了浓厚兴趣,以更好地预测疾病侵袭性和患者预后。同样,缺乏强大的工具来组合在多个不同长度尺度上表现出的疾病特异性特征。本综述的目的是从检测、分割、特征提取和组织分类的角度,讨论用于数字病理学图像预测建模的计算图像分析工具的发展情况。我们讨论了用于改进组织外观预测建模的新手工特征方法的出现,并回顾了用于目标检测和组织分类的深度学习方案的出现。我们还简要回顾了放射学和病理学图像融合以及将数字病理学衍生的图像测量结果与分子“组学”特征相结合以进行更好的预测建模的一些最新技术水平。综述最后简要讨论了一些需要克服的技术和计算挑战,并对组织病理学定量分析的未来机会进行了思考。

相似文献

4
New Trends of Emerging Technologies in Digital Pathology.数字病理学中新兴技术的新趋势
Pathobiology. 2016;83(2-3):61-9. doi: 10.1159/000443482. Epub 2016 Apr 26.
7
Applications and challenges of digital pathology and whole slide imaging.数字病理学与全切片成像的应用及挑战
Biotech Histochem. 2015 Jul;90(5):341-7. doi: 10.3109/10520295.2015.1044566. Epub 2015 May 15.
9
Deep computational pathology in breast cancer.深度学习在乳腺癌中的应用。
Semin Cancer Biol. 2021 Jul;72:226-237. doi: 10.1016/j.semcancer.2020.08.006. Epub 2020 Aug 17.
10
Meeting Report: Tissue-based Image Analysis.会议报告:基于组织的图像分析
Toxicol Pathol. 2017 Oct;45(7):983-1003. doi: 10.1177/0192623317737468.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验