Torkamaneh Davoud, Boyle Brian, Belzile François
Département de Phytologie, Université Laval, Québec City, QC, Canada.
Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada.
Theor Appl Genet. 2018 Mar;131(3):499-511. doi: 10.1007/s00122-018-3056-z. Epub 2018 Jan 19.
Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.
下一代测序(NGS)通过提供强大的基因分型方法,彻底改变了植物和动物研究。本综述描述并讨论了其优势、挑战,以及最重要的——促进数据处理、缺失数据处理和跨平台数据整合的解决方案。下一代测序技术为植物育种者和研究人员提供了强大且灵活的基因分型方法。这些方法提供了广泛的应用,从全基因组分析到常规筛选,具有高度的准确性和可重复性。此外,它们提供了一个简单的工作流程,能够在短时间内以低成本识别、验证和筛选遗传变异。基于NGS的基因分型方法包括全基因组重测序、SNP阵列和简化基因组测序,这些方法在作物中得到了广泛应用。当今育种者和遗传学家面临的主要挑战是如何选择合适的基因分型方法,以及如何整合从各种来源获得的基因分型数据集。在此,我们综述并讨论了几种用于作物全基因组遗传标记开发和基因分型的NGS方法的优势和挑战。我们还讨论了如何使用填充方法来填补基因型数据集中的缺失数据,以及整合使用不同基因分型工具获得的数据集。我们希望这种对基因分型方法的综合观点将有助于遗传学家和育种者在作物育种和研究中整合这些基于NGS的方法。