Suppr超能文献

多中心脑 MRI 的视野归一化。

Field of View Normalization in Multi-Site Brain MRI.

机构信息

Department of Pediatrics and Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Neuroinformatics. 2018 Oct;16(3-4):431-444. doi: 10.1007/s12021-018-9359-z.

Abstract

Multi-site brain MRI analysis is needed in big data neuroimaging studies, but challenging. The challenges lie in almost every analysis step including skull stripping. The diversities in multi-site brain MR images make it difficult to tune parameters specific to subjects or imaging protocols. Alternatively, using constant parameter settings often leads to inaccurate, inconsistent and even failed skull stripping results. One reason is that images scanned at different sites, under different scanners or protocols, and/or by different technicians often have very different fields of view (FOVs). Normalizing FOV is currently done manually or using ad hoc pre-processing steps, which do not always generalize well to multi-site diverse images. In this paper, we show that (a) a generic FOV normalization approach is possible in multi-site diverse images; we show experiments on images acquired from Philips, GE, Siemens scanners, from 1.0T, 1.5T, 3.0T field of strengths, and from subjects 0-90 years of ages; and (b) generic FOV normalization improves skull stripping accuracy and consistency for multiple skull stripping algorithms; we show this effect for 5 skull stripping algorithms including FSL's BET, AFNI's 3dSkullStrip, FreeSurfer's HWA, BrainSuite's BSE, and MASS. We have released our FOV normalization software at http://www.nitrc.org/projects/normalizefov .

摘要

在大数据神经影像学研究中需要进行多站点脑 MRI 分析,但具有挑战性。挑战存在于几乎每个分析步骤中,包括颅骨剥离。多站点脑 MR 图像的多样性使得难以针对个体或成像协议调整特定的参数。或者,使用恒定的参数设置通常会导致不准确、不一致甚至失败的颅骨剥离结果。原因之一是在不同地点、不同扫描仪或协议下扫描的图像,和/或由不同技术人员扫描的图像,视野(FOV)往往非常不同。目前,FOV 的归一化是手动完成的,或者使用特定的预处理步骤,这并不总是能够很好地推广到多站点的多样化图像。在本文中,我们表明:(a) 在多站点多样化图像中可以实现通用的 FOV 归一化方法;我们在来自飞利浦、GE、西门子扫描仪的图像上进行了实验,这些图像的场强为 1.0T、1.5T、3.0T,受试者年龄为 0-90 岁;(b) 通用 FOV 归一化可提高多种颅骨剥离算法的颅骨剥离准确性和一致性;我们展示了对包括 FSL 的 BET、AFNI 的 3dSkullStrip、FreeSurfer 的 HWA、BrainSuite 的 BSE 和 MASS 在内的 5 种颅骨剥离算法的影响。我们已经在 http://www.nitrc.org/projects/normalizefov 上发布了我们的 FOV 归一化软件。

相似文献

1
Field of View Normalization in Multi-Site Brain MRI.多中心脑 MRI 的视野归一化。
Neuroinformatics. 2018 Oct;16(3-4):431-444. doi: 10.1007/s12021-018-9359-z.
4
A meta-algorithm for brain extraction in MRI.一种用于磁共振成像(MRI)中脑提取的元算法。
Neuroimage. 2004 Oct;23(2):625-37. doi: 10.1016/j.neuroimage.2004.06.019.
7
SynthStrip: skull-stripping for any brain image.SynthStrip:用于任何脑图像的头骨剥离。
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
9
Robust skull stripping of clinical glioblastoma multiforme data.对临床多形性胶质母细胞瘤数据进行稳健的颅骨剥离。
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):659-66. doi: 10.1007/978-3-642-23626-6_81.

引用本文的文献

4
aXonica: A support package for MRI based Neuroimaging.Axonica:一个基于磁共振成像的神经成像支持软件包。
Biotechnol Notes. 2024 Aug 22;5:120-136. doi: 10.1016/j.biotno.2024.08.001. eCollection 2024.

本文引用的文献

10
Multi-atlas skull-stripping.多图谱颅骨剥离。
Acad Radiol. 2013 Dec;20(12):1566-76. doi: 10.1016/j.acra.2013.09.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验