Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA.
Khoury College of Computer and Information Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
Sci Rep. 2024 Nov 14;14(1):27935. doi: 10.1038/s41598-024-78157-0.
Can brain structure predict human intelligence? T1-weighted structural brain magnetic resonance images (sMRI) have been correlated with intelligence. However, the population-level association does not fully account for individual variability in intelligence. To address this, studies have emerged recently to predict individual subject's intelligence or neurocognitive scores. However, they are mostly on predicting fluid intelligence (the ability to solve new problems). Studies are lacking to predict crystallized intelligence (the ability to accumulate knowledge) or general intelligence (fluid and crystallized intelligence combined). This study tests whether deep learning of sMRI can predict an individual subject's verbal, comprehensive, and full-scale intelligence quotients (VIQ, PIQ, and FSIQ), which reflect fluid and crystallized intelligence. We performed a comprehensive set of 432 experiments, using different input image channels, six deep learning models, and two outcome settings, in 850 healthy and autistic subjects 6-64 years of age. Our findings indicate a statistically significant potential of T1-weighted sMRI in predicting intelligence, with a Pearson correlation exceeding 0.21 (p < 0.001). Interestingly, we observed that an increase in the complexity of deep learning models does not necessarily translate to higher accuracy in intelligence prediction. The interpretations of our 2D and 3D CNNs, based on GradCAM, align well with the Parieto-Frontal Integration Theory (P-FIT), reinforcing the theory's suggestion that human intelligence is a result of interactions among various brain regions, including the occipital, temporal, parietal, and frontal lobes. These promising results invite further studies and open new questions in the field.
大脑结构能否预测人类智力?T1 加权结构磁共振成像(sMRI)与智力相关。然而,人群水平的相关性并不能完全解释智力的个体差异。为了解决这个问题,最近出现了一些研究来预测个体的智力或神经认知评分。然而,它们大多是预测流体智力(解决新问题的能力)。缺乏预测晶体智力(积累知识的能力)或一般智力(流体智力和晶体智力的结合)的研究。本研究测试了深度学习 sMRI 是否可以预测个体的言语、综合和全尺度智商(VIQ、PIQ 和 FSIQ),这些智商反映了流体智力和晶体智力。我们在 850 名健康和自闭症受试者(6-64 岁)中进行了一套全面的 432 项实验,使用了不同的输入图像通道、六个深度学习模型和两种结果设置。我们的研究结果表明,T1 加权 sMRI 在预测智力方面具有统计学上的显著潜力,皮尔逊相关系数超过 0.21(p < 0.001)。有趣的是,我们观察到深度学习模型的复杂性增加并不一定意味着智力预测的准确性更高。基于 GradCAM 的我们的 2D 和 3D CNN 的解释与顶-额整合理论(P-FIT)很好地吻合,这强化了该理论的观点,即人类智力是各种大脑区域相互作用的结果,包括枕叶、颞叶、顶叶和额叶。这些有希望的结果邀请进一步的研究,并在该领域提出新的问题。