Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale - IRCCS, Reggio Emilia, Italy.
First Department of Dermatology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Br J Dermatol. 2018 Jul;179(1):163-172. doi: 10.1111/bjd.16364. Epub 2018 Apr 28.
Although several dermoscopic features of in situ melanoma have been identified, data on confocal features of in situ melanoma are still lacking.
To identify reflectance confocal microscopy (RCM) features of in situ melanoma and to develop a diagnostic score combining dermoscopy and RCM.
In total, 120 in situ melanoma and 213 nevi (test set) were retrospectively analysed to assess the presence of dermoscopic and RCM criteria. Facial and acral lesions were excluded. Spearman's correlation, univariate and multivariate regression models were used to identify features significantly correlated with in situ melanoma diagnosis. Multivariate results on the test set allowed the development of a multistep algorithm, that was tested on a validation set of 100 lesions.
The dermoscopic findings of an atypical network and regression were independent predicting factors for in situ melanoma diagnosis [odds ratio (OR) 3·44, 95% CI (confidence interval) 1·70-6·97 and OR 4·17, 95% CI 1·93-9·00, respectively]. Significant confocal predictors for malignancy were epidermal pagetoid spread (OR 2·83, 95% CI 1·32-6·04) and junctional cytological atypia (OR 3·39, 95% CI 1·38-8·30 if focal, OR 8·44, 95% CI 3·21-22·16 if widespread). A multistep diagnostic algorithm able to predict in situ melanoma with a sensitivity of 92·5% and a specificity of 61% was developed. The validation set confirmed the high diagnostic value (sensitivity 92%, specificity 58%).
An easy and reproducible multistep algorithm for in situ melanoma detection is suggested, that can be routinely used in tertiary centres.
虽然已经确定了原位黑素瘤的一些皮肤镜特征,但有关其共聚焦特征的数据仍然缺乏。
确定反射共聚焦显微镜(RCM)在原位黑素瘤中的特征,并开发一种结合皮肤镜和 RCM 的诊断评分。
回顾性分析了 120 例原位黑素瘤和 213 例痣(测试集),以评估皮肤镜和 RCM 标准的存在。排除面部和肢端病变。使用 Spearman 相关分析、单变量和多变量回归模型来确定与原位黑素瘤诊断显著相关的特征。在测试集上的多变量结果允许开发一个多步算法,然后在 100 例验证集上进行测试。
不典型网络和退行的皮肤镜发现是原位黑素瘤诊断的独立预测因素[优势比(OR)3.44,95%置信区间(CI)1.70-6.97 和 OR 4.17,95%CI 1.93-9.00]。具有恶性潜能的显著共聚焦预测因子为表皮派杰样播散(OR 2.83,95%CI 1.32-6.04)和交界细胞异型性(OR 3.39,95%CI 1.38-8.30 为局灶性,OR 8.44,95%CI 3.21-22.16 为广泛性)。开发了一种能够以 92.5%的敏感性和 61%的特异性预测原位黑素瘤的多步诊断算法。验证集证实了该算法具有较高的诊断价值(敏感性 92%,特异性 58%)。
建议使用一种简单且可重复的多步算法来检测原位黑素瘤,该算法可在三级中心常规使用。