Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201706322. Epub 2018 Jan 22.
In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH ) X (Fc = ferrocenyl, X = NH , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes.
在分子电子学中,控制分子-电极相互作用的强度以平衡电子耦合强度和分子前线轨道展宽之间的权衡关系非常重要:耦合太强会导致分子轨道严重展宽,而耦合太弱时,分子轨道无法跟随施加偏压下费米能级的变化。本文报道了一种基于石墨烯底电极的平台,分子可以通过π-π相互作用与该平台结合。这些相互作用足够强,可以诱导电子功能(整流),同时最小化分子前线轨道的展宽。基于自组装单层(SAM)的分子隧道结是在石墨烯底电极上制造的,这些 SAM 由通过π-π相互作用与石墨烯结合的 Fc(CH ) X(Fc = 二茂铁基,X = NH 、Br 或 H)组成,与镓和铟共晶顶电极接触。Fc 单元与石墨烯的相互作用比 X 单元强,导致 SAM 中的 Fc 位于 SAM 的底部。这些分子二极管的整流比为 30-40,并且在环境条件下的偏压应力下稳定。因此,基于具有π-π分子-电极耦合的石墨烯的隧道结是制造稳定且性能良好的分子二极管的有前途的平台。