Suppr超能文献

比较三种在小鼠内嗅-海马系统中的γ振荡。

Comparison of three gamma oscillations in the mouse entorhinal-hippocampal system.

机构信息

Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.

出版信息

Eur J Neurosci. 2018 Oct;48(8):2795-2806. doi: 10.1111/ejn.13831. Epub 2018 Feb 9.

Abstract

The entorhinal-hippocampal system is an important circuit in the brain, essential for certain cognitive tasks such as memory and navigation. Different gamma oscillations occur in this circuit, with the medial entorhinal cortex (mEC), CA3 and CA1 all generating gamma oscillations with different properties. These three gamma oscillations converge within CA1, where much work has gone into trying to isolate them from each other. Here, we compared the gamma generators in the mEC, CA3 and CA1 using optogenetically induced theta-gamma oscillations. Expressing channelrhodopsin-2 in principal neurons in each of the three regions allowed for the induction of gamma oscillations via sinusoidal blue light stimulation at theta frequency. Recording the oscillations in CA1 in vivo, we found that CA3 stimulation induced slower gamma oscillations than CA1 stimulation, matching in vivo reports of spontaneous CA3 and CA1 gamma oscillations. In brain slices ex vivo, optogenetic stimulation of CA3 induced slower gamma oscillations than stimulation of either mEC or CA1, whose gamma oscillations were of similar frequency. All three gamma oscillations had a current sink-source pair between the perisomatic and dendritic layers of the same region. Taking advantage of this model to analyse gamma frequency mechanisms in slice, we showed using pharmacology that all three gamma oscillations were dependent on the same types of synaptic receptor, being abolished by blockade of either type A γ-aminobutyric acid receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors, and insensitive to blockade of N-methyl-d-aspartate receptors. These results indicate that a fast excitatory-inhibitory feedback loop underlies the generation of gamma oscillations in all three regions.

摘要

内嗅-海马系统是大脑中的一个重要回路,对记忆和导航等特定认知任务至关重要。该回路中存在不同的γ 振荡,其中内侧内嗅皮层(mEC)、CA3 和 CA1 均产生具有不同特性的γ 振荡。这三种γ 振荡在 CA1 中汇聚,许多工作都致力于试图将它们彼此分离。在这里,我们使用光遗传学诱导的θ-γ 振荡比较了 mEC、CA3 和 CA1 中的γ 发生器。在这三个区域的主要神经元中表达通道视紫红质-2,通过正弦蓝光刺激以θ 频率诱导γ 振荡。在 CA1 中进行体内记录时,我们发现 CA3 刺激诱导的γ 振荡比 CA1 刺激慢,与自发 CA3 和 CA1γ 振荡的体内报告相匹配。在脑片外,CA3 的光遗传学刺激诱导的γ 振荡比 mEC 或 CA1 的刺激慢,其γ 振荡的频率相似。三种γ 振荡在同一区域的胞体和树突层之间都有电流源-汇对。利用这个模型来分析切片中的γ 频率机制,我们使用药理学表明,所有三种γ 振荡都依赖于相同类型的突触受体,阻断任何类型的 A 型γ-氨基丁酸受体或α-氨基-3-羟基-5-甲基-4-异恶唑丙酸/海人藻酸受体均可使其消除,而对 N-甲基-D-天冬氨酸受体的阻断不敏感。这些结果表明,在所有三个区域中,快速的兴奋性抑制反馈环是γ 振荡产生的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4f2/6221063/14648b9d6316/EJN-48-2795-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验