Tang Hongjie, Chen Wei, Wang Jiangyan, Dugger Thomas, Cruz Luz, Kisailus David
Department of Chemical and Environmental Engineering, University of California at Riverside, CA, 92521, USA.
Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
Small. 2018 Mar;14(11):e1703459. doi: 10.1002/smll.201703459. Epub 2018 Jan 22.
Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co O , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co O and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields.
碳基纳米复合材料在替代商业铂碳作为高性能、低成本、非贵金属基氧还原反应(ORR)催化剂方面已显示出令人鼓舞的成果。开发活性成分(如金属氧化物)和碳材料的独特纳米结构对于其在下一代燃料电池和金属空气电池电极材料中的应用至关重要。在此,报道了一种通用方法,通过简便的两步静电纺丝和退火工艺制备嵌入活性ORR成分(M/MO,即金属或金属氧化物纳米颗粒)的一维多孔氮掺杂石墨碳纤维。金属纳米颗粒/纳米团簇在聚合物纳米纤维内成核,随后催化周围聚合物基质的石墨化,经过氧化后,形成具有大孔通道、大量活性位点和高比表面积的互连石墨-金属氧化物框架。金属/金属氧化物@氮掺杂石墨碳纤维,尤其是CoO,在碱性溶液中表现出与铂相当的ORR催化活性,但稳定性和甲醇耐受性优于铂,这可归因于CoO与由互连的氮掺杂石墨纳米碳环组成的坚固一维多孔结构之间的协同化学耦合效应。这一发现为使用静电纺丝碳纳米材料设计功能电催化剂以应用于能量存储和转换领域提供了新的见解。