Suppr超能文献

光适应机制对哺乳动物视网膜在高光水平下视觉编码的影响。

Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels.

作者信息

Borghuis Bart G, Ratliff Charles P, Smith Robert G

机构信息

Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky.

Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.

出版信息

J Neurophysiol. 2018 Apr 1;119(4):1437-1449. doi: 10.1152/jn.00682.2017. Epub 2017 Dec 27.

Abstract

A persistent change in illumination causes light-adaptive changes in retinal neurons. Light adaptation improves visual encoding by preventing saturation and by adjusting spatiotemporal integration to increase the signal-to-noise ratio (SNR) and utilize signaling bandwidth efficiently. In dim light, the visual input contains a greater relative amount of quantal noise, and vertebrate receptive fields are extended in space and time to increase SNR. Whereas in bright light, SNR of the visual input is high, the rate of synaptic vesicle release from the photoreceptors is low so that quantal noise in synaptic output may limit SNR postsynaptically. Whether and how reduced synaptic SNR impacts spatiotemporal integration in postsynaptic neurons remains unclear. To address this, we measured spatiotemporal integration in retinal horizontal cells and ganglion cells in the guinea pig retina across a broad illumination range, from low to high photopic levels. In both cell types, the extent of spatial and temporal integration changed according to an inverted U-shaped function consistent with adaptation to low SNR at both low and high light levels. We show how a simple mechanistic model with interacting, opponent filters can generate the observed changes in ganglion cell spatiotemporal receptive fields across light-adaptive states and postulate that retinal neurons postsynaptic to the cones in bright light adopt low-pass spatiotemporal response characteristics to improve visual encoding under conditions of low synaptic SNR.

摘要

光照的持续变化会导致视网膜神经元发生光适应性变化。光适应通过防止信号饱和以及调整时空整合来提高视觉编码,从而增加信噪比(SNR)并有效利用信号带宽。在暗光条件下,视觉输入中量子噪声的相对含量更高,脊椎动物的感受野在空间和时间上会扩展以提高信噪比。而在强光条件下,视觉输入的信噪比很高,但光感受器释放突触小泡的速率很低,因此突触输出中的量子噪声可能会在突触后限制信噪比。突触信噪比降低是否以及如何影响突触后神经元的时空整合仍不清楚。为了解决这个问题,我们在从低到高光适应水平的广泛光照范围内,测量了豚鼠视网膜中水平细胞和神经节细胞的时空整合。在这两种细胞类型中,空间和时间整合的程度都根据倒U形函数发生变化,这与在低光和高光水平下对低信噪比的适应一致。我们展示了一个具有相互作用的对抗滤波器的简单机制模型如何能够产生神经节细胞在不同光适应状态下观察到的时空感受野变化,并推测在强光下与视锥细胞形成突触的视网膜神经元采用低通时空响应特性,以在低突触信噪比条件下改善视觉编码。

相似文献

引用本文的文献

10
Temporal vision: measures, mechanisms and meaning.时间视觉:测量、机制与意义。
J Exp Biol. 2021 Jul 15;224(15). doi: 10.1242/jeb.222679. Epub 2021 Jul 30.

本文引用的文献

7
Loss of sensitivity in an analog neural circuit.模拟神经回路中的敏感性丧失。
J Neurosci. 2009 Mar 11;29(10):3045-58. doi: 10.1523/JNEUROSCI.5071-08.2009.
10
Design of a neuronal array.神经元阵列的设计。
J Neurosci. 2008 Mar 19;28(12):3178-89. doi: 10.1523/JNEUROSCI.5259-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验