Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-0518, USA.
Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-0518, USA.
Cell Rep. 2022 Feb 1;38(5):110317. doi: 10.1016/j.celrep.2022.110317.
Neural circuits function in the face of changing inputs, either caused by normal variation in stimuli or by cell death. To maintain their ability to perform essential computations with partial inputs, neural circuits make modifications. Here, we study the retinal circuit's responses to changes in light stimuli or in photoreceptor inputs by inducing partial cone death in the mature mouse retina. Can the retina withstand or recover from input loss? We find that the excitatory pathways exhibit functional loss commensurate with cone death and with some aspects predicted by partial light stimulation. However, inhibitory pathways recover functionally from lost input by increasing spatiotemporal integration in a way that is not recapitulated by partially stimulating the control retina. Anatomically, inhibitory synapses are upregulated on secondary bipolar cells and output ganglion cells. These findings demonstrate the greater capacity for inhibition, compared with excitation, to modify spatiotemporal processing with fewer cone inputs.
神经回路在面对变化的输入时发挥作用,这些输入要么是由刺激的正常变化引起的,要么是由细胞死亡引起的。为了保持它们在部分输入下执行基本计算的能力,神经回路会进行修改。在这里,我们通过在成熟的小鼠视网膜中诱导部分视锥细胞死亡来研究视网膜回路对光刺激或光感受器输入变化的反应。视网膜能否承受或从输入损失中恢复?我们发现,与视锥细胞死亡和部分光刺激预测的某些方面相一致,兴奋性通路表现出功能丧失。然而,抑制性通路通过增加时空整合的方式从丢失的输入中恢复功能,而这在部分刺激对照视网膜时并没有重现。在解剖学上,二级双极细胞和输出神经节细胞上的抑制性突触被上调。这些发现表明,与兴奋相比,抑制具有更大的能力,用更少的视锥细胞输入来修改时空处理。