1 Departament of Psychiatry, Hospital de Mataró, Barcelona, Spain.
2 Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain.
J Atten Disord. 2019 Apr;23(6):599-614. doi: 10.1177/1087054717749931. Epub 2018 Jan 22.
ADHD youth show poor oculomotor control. Recent research shows that attention-related eye vergence is weak in ADHD children.
To validate vergence as a marker to classify ADHD, we assessed the modulation in the angle of vergence of children ( n = 43) previously diagnosed with ADHD while performing an attention task and compared the results with age-matched clinical controls ( n = 19) and healthy peers ( n = 30).
We observed strong vergence responses in healthy participants and weak vergence in the clinical controls. ADHD children showed no significant vergence responses. Machine-learning models classified ADHD patients ( n = 21) from healthy controls ( n = 21) with an accuracy of 96.3% (false positive [FP]: 5.12%; false negative [FN]: 0%; area under the curve [AUC]: 0.99) and ADHD children ( n = 11) from clinical controls ( n = 14) with an accuracy of 85.7% (FP: 4.5%; FN: 19.2%, AUC: 0.90).
In combination with an attention task, vergence responses can be used as an objective marker to detect ADHD in children.
ADHD 青少年的眼球运动控制能力较差。最近的研究表明,ADHD 儿童的注意力相关眼聚散较弱。
为了验证聚散作为分类 ADHD 的标志物,我们评估了先前被诊断为 ADHD 的儿童(n=43)在执行注意力任务时的聚散角调节,并将结果与年龄匹配的临床对照组(n=19)和健康对照组(n=30)进行比较。
我们观察到健康参与者有强烈的聚散反应,而临床对照组的聚散反应较弱。ADHD 儿童没有明显的聚散反应。机器学习模型以 96.3%的准确率(假阳性[FP]:5.12%;假阴性[FN]:0%;曲线下面积[AUC]:0.99)将 ADHD 患者(n=21)与健康对照组(n=21)区分开来,以 85.7%的准确率(FP:4.5%;FN:19.2%,AUC:0.90)将 ADHD 儿童(n=11)与临床对照组(n=14)区分开来。
结合注意力任务,聚散反应可作为检测儿童 ADHD 的客观标志物。