Suppr超能文献

单亲表达是驱动玉米杂种中非同源基因广泛互补的通用机制。

Single-Parent Expression Is a General Mechanism Driving Extensive Complementation of Non-syntenic Genes in Maize Hybrids.

机构信息

Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany.

Department of Statistics, Iowa State University, 2438 Osborne Dr., Ames, IA 50011-1210, USA.

出版信息

Curr Biol. 2018 Feb 5;28(3):431-437.e4. doi: 10.1016/j.cub.2017.12.027. Epub 2018 Jan 18.

Abstract

Maize (Zea mays L.) displays an exceptional degree of structural genomic diversity [1, 2]. In addition, variation in gene expression further contributes to the extraordinary phenotypic diversity and plasticity of maize. This study provides a systematic investigation on how distantly related homozygous maize inbred lines affect the transcriptomic plasticity of their highly heterozygous F hybrids. The classical dominance model of heterosis explains the superiority of hybrid plants by the complementation of deleterious parental alleles by superior alleles of the second parent at many loci [3]. Genes active in one inbred line but inactive in another represent an extreme instance of allelic diversity defined as single-parent expression [4]. We observed on average ∼1,000 such genes in all inbred line combinations during primary root development. These genes consistently displayed expression complementation (i.e., activity) in their hybrid progeny. Consequently, extreme expression complementation is a general mechanism that results on average in ∼600 additionally active genes and their encoded biological functions in hybrids. The modern maize genome is complemented by a set of non-syntenic genes, which emerged after the separation of the maize and sorghum lineages and lack syntenic orthologs in any other grass species [5]. We demonstrated that non-syntenic genes are the driving force of gene expression complementation in hybrids. Among those, the highly diversified families of bZIP and bHLH transcription factors [6] are systematically overrepresented. In summary, extreme gene expression complementation extensively shapes the transcriptomic plasticity of maize hybrids and might therefore be one factor controlling the developmental plasticity of hybrids.

摘要

玉米(Zea mays L.)表现出极高程度的结构基因组多样性[1,2]。此外,基因表达的变化进一步导致了玉米非凡的表型多样性和可塑性。本研究系统地研究了远缘纯合玉米自交系如何影响其高度杂合 F1 杂种的转录组可塑性。杂种优势的经典显性模型通过在许多位点上由第二亲本的优势等位基因来互补有害亲本等位基因来解释杂种植物的优越性[3]。在一个自交系中活跃而在另一个自交系中不活跃的基因代表了等位基因多样性的一个极端情况,定义为单亲表达[4]。我们在主根发育过程中观察到所有自交系组合中平均约有 1000 个这样的基因。这些基因在其杂种后代中始终表现出表达互补(即活性)。因此,极端表达互补是一种普遍机制,平均导致约 600 个额外的活跃基因及其在杂种中的编码生物学功能。现代玉米基因组由一组非同源基因补充,这些基因是在玉米和高粱谱系分离后出现的,在任何其他禾本科物种中都缺乏同源的直系同源基因[5]。我们证明非同源基因是杂种中基因表达互补的驱动力。其中,bZIP 和 bHLH 转录因子的高度多样化家族[6]系统地过表达。总之,极端的基因表达互补广泛塑造了玉米杂种的转录组可塑性,因此可能是控制杂种发育可塑性的因素之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验