Suppr超能文献

基于自适应多尺度细节增强的遥感图像时空超分辨率重建

Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

作者信息

Zhu Hong, Tang Xinming, Xie Junfeng, Song Weidong, Mo Fan, Gao Xiaoming

机构信息

Satellite Surveying and Mapping Application Center, NASG, Beijing 100048, China.

College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.

出版信息

Sensors (Basel). 2018 Feb 7;18(2):498. doi: 10.3390/s18020498.

Abstract

There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

摘要

现有的基于重建的超分辨率算法存在许多问题,例如缺乏纹理特征表示和高频细节。多尺度细节增强可以产生更多的纹理信息和高频信息。因此,本文提出了基于自适应多尺度细节增强(AMDE-SR)的遥感图像超分辨率重建方法。首先,计算每幅遥感图像的信息熵,将熵值最大的图像作为参考图像。随后,采用相位归一化处理时空遥感图像,即减少图像数据的时间相位差,增强信息的互补性。然后利用₀梯度最小化模型对多尺度图像信息进行分解,通过差分计算和扩展非冗余层以及利用迭代反投影(IBP)技术对冗余层进行处理,得到不同尺度的非冗余信息。利用交叉熵对不同尺度的非冗余信息进行自适应加权融合。最后,构建非线性纹理细节增强函数以扩大小细节的范围,并将峰值信噪比(PSNR)用作迭代约束。最终,通过迭代优化获得具有丰富纹理信息的高分辨率遥感图像。实际结果表明,对于2倍的放大倍数,熵平均增益高达0.42 dB,对于2倍的放大倍数,增强测量评估有显著的提升增益。实验结果表明,AMED-SR方法在视觉和精度提升方面的性能优于现有的超分辨率重建方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c9c/5855159/ff16e17a5f11/sensors-18-00498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验