Torres-Salas Pamela, Bernal Vicente, López-Gallego Fernando, Martínez-Crespo Javier, Sánchez-Murcia Pedro A, Barrera Victor, Morales-Jiménez Rocío, García-Sánchez Ana, Mañas-Fernández Aurora, Seoane José M, Sagrera Polo Marta, Miranda Juande D, Calvo Javier, Huertas Sonia, Torres José L, Alcalde-Bascones Ana, González-Barrera Sergio, Gago Federico, Morreale Antonio, González-Barroso María Del Mar
Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain.
CIC biomaGUNE , Paseo de Miramón 182, 20014 San Sebastián, Spain.
Biochemistry. 2018 Feb 27;57(8):1338-1348. doi: 10.1021/acs.biochem.7b01186. Epub 2018 Feb 6.
Thiolases catalyze the condensation of acyl-CoA thioesters through the Claisen condensation reaction. The best described enzymes usually yield linear condensation products. Using a combined computational/experimental approach, and guided by structural information, we have studied the potential of thiolases to synthesize branched compounds. We have identified a bulky residue located at the active site that blocks proper accommodation of substrates longer than acetyl-CoA. Amino acid replacements at such a position exert effects on the activity and product selectivity of the enzymes that are highly dependent on a protein scaffold. Among the set of five thiolases studied, Erg10 thiolase from Saccharomyces cerevisiae showed no acetyl-CoA/butyryl-CoA branched condensation activity, but variants at position F293 resulted the most active and selective biocatalysts for this reaction. This is the first time that a thiolase has been engineered to synthesize branched compounds. These novel enzymes enrich the toolbox of combinatorial (bio)chemistry, paving the way for manufacturing a variety of α-substituted synthons. As a proof of concept, we have engineered Clostridium's 1-butanol pathway to obtain 2-ethyl-1-butanol, an alcohol that is interesting as a branched model compound.
硫解酶通过克莱森缩合反应催化酰基辅酶A硫酯的缩合反应。研究得最为透彻的酶通常生成线性缩合产物。我们采用计算与实验相结合的方法,并以结构信息为指导,研究了硫解酶合成支链化合物的潜力。我们在活性位点发现了一个庞大的残基,它会阻碍比乙酰辅酶A更长的底物的正常容纳。在这个位置进行氨基酸替换会对酶的活性和产物选择性产生影响,而这高度依赖于蛋白质支架。在所研究的五种硫解酶中,酿酒酵母的Erg10硫解酶没有乙酰辅酶A/丁酰辅酶A支链缩合活性,但F293位点的变体是该反应活性最高且选择性最强的生物催化剂。这是首次对硫解酶进行工程改造以合成支链化合物。这些新型酶丰富了组合(生物)化学的工具库,为制造各种α-取代合成子铺平了道路。作为概念验证,我们对梭菌的1-丁醇途径进行了工程改造,以获得2-乙基-1-丁醇,这是一种作为支链模型化合物很有意义的醇。