Suppr超能文献

核心基质基因特征可预测癌症结局。

A core matrisome gene signature predicts cancer outcome.

机构信息

CRUK/MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.

Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford OX3 7LE, UK.

出版信息

Br J Cancer. 2018 Feb 6;118(3):435-440. doi: 10.1038/bjc.2017.458. Epub 2018 Jan 23.

Abstract

BACKGROUND

Accumulating evidence implicates the tumour stroma as an important determinant of cancer progression but the protein constituents relevant for this effect are unknown. Here we utilised a bioinformatics approach to identify an extracellular matrix (ECM) gene signature overexpressed in multiple cancer types and strongly predictive of adverse outcome.

METHODS

Gene expression levels in cancers were determined using Oncomine. Geneset enrichment analysis was performed using the Broad Institute desktop application. Survival analysis was performed using KM plotter. Survival data were generated from publically available genesets.

RESULTS

We analysed ECM genes significantly upregulated across a large cohort of patients with ovarian, lung, gastric and colon cancers and defined a signature of nine commonly upregulated genes. Each of these nine genes was considerably overexpressed in all the cancers studied, and cumulatively, their expression was associated with poor prognosis across all data sets. Further, the gene signature expression was associated with enrichment of genes governing processes linked to poor prognosis, such as EMT, angiogenesis, hypoxia, and inflammation.

CONCLUSIONS

Here we identify a nine-gene ECM signature, which strongly predicts outcome across multiple cancer types and can be used for prognostication after validation in prospective cancer cohorts.

摘要

背景

越来越多的证据表明肿瘤基质是癌症进展的一个重要决定因素,但与这种效应相关的蛋白质成分尚不清楚。在这里,我们利用生物信息学方法来识别在多种癌症中过度表达并强烈预示不良预后的细胞外基质 (ECM) 基因特征。

方法

使用 Oncomine 确定癌症中的基因表达水平。使用 Broad Institute 桌面应用程序进行基因集富集分析。使用 KM plotter 进行生存分析。生存数据来自公开的基因集。

结果

我们分析了卵巢癌、肺癌、胃癌和结肠癌大量患者中 ECM 基因的上调情况,并定义了一个由九个常见上调基因组成的特征。这九个基因在所有研究的癌症中都明显过度表达,它们的累积表达与所有数据集的不良预后相关。此外,基因特征表达与 EMT、血管生成、缺氧和炎症等与不良预后相关的基因调控过程的富集相关。

结论

在这里,我们确定了一个由九个 ECM 基因组成的特征,该特征可强烈预测多种癌症的预后,并可在前瞻性癌症队列中进行验证后用于预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ec/5808042/eca6ecea9388/bjc2017458f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验