China National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450001, China.
Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610000, China.
Sensors (Basel). 2018 Jan 24;18(2):335. doi: 10.3390/s18020335.
The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.
脑电图(EEG)信号代表了主体特定的大脑活动模式,由于其具有优越的防伪能力,被认为是一种理想的生物识别方式。然而,目前基于 EEG 的人员认证系统的准确性和稳定性在实际应用中仍然不尽如人意。在本文中,我们提出了一种结合眨眼的多任务基于 EEG 的人员认证系统,该系统可以实现高精度和高鲁棒性。首先,我们设计了一种使用自我或非自我面孔快速序列视觉呈现(RSVP)的新颖 EEG 生物特征诱发范式。该设计的范式可以从 EEG 中获得具有较低时间成本的独特而稳定的生物特征。其次,从 EEG 信号和眨眼信号中分别提取事件相关电位(ERP)特征和形态特征。然后,分别设计卷积神经网络和反向传播神经网络来获得 EEG 特征和眨眼特征的得分估计。最后,提出了一种基于最小二乘法的分数融合技术来获得最终的估计分数。与仅使用 EEG 的系统相比,多任务认证系统的性能得到了显著提高,平均准确率从 92.4%提高到 97.6%。此外,还进行了额外干扰者的开放集认证测试和用户的持久性测试,以模拟实际场景,这在以前的基于 EEG 的人员认证系统中从未使用过。在开放集认证测试和持久性测试中,分别实现了 3.90%的平均误接受率(FAR)和 3.87%的平均误拒绝率(FRR),这说明了我们系统的开放集认证和持久性能力。