Park Sangin, Ha Jihyeon, Kim Laehyun
Industry-Academy Cooperation Team, Hanyang University, Seoul, Republic of Korea.
Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Front Physiol. 2024 Aug 13;15:1325784. doi: 10.3389/fphys.2024.1325784. eCollection 2024.
This study aimed at developing a noncontact authentication system using event-related pupillary response (ErPR) epochs in an augmented reality (AR) environment. Thirty participants were shown in a rapid serial visual presentation consisting of familiar and unknown human photographs. ErPR was compared with event-related potential (ERP). ERP and ErPR amplitudes for familiar faces were significantly larger compared with those for stranger faces. The ERP-based authentication system exhibited perfect accuracy using a linear support vector machine classifier. A quadratic discriminant analysis classifier trained using ErPR features achieved high accuracy (97%) and low false acceptance (0.03) and false rejection (0.03) rates. The correlation coefficients between ERP and ErPR amplitudes were 0.452-0.829, and the corresponding Bland-Altman plots showed a fairly good agreement between them. The ErPR-based authentication system allows noncontact authentication of persons without the burden of sensor attachment via low-cost, noninvasive, and easily implemented technology in an AR environment.
本研究旨在开发一种在增强现实(AR)环境中使用事件相关瞳孔反应(ErPR)片段的非接触式认证系统。30名参与者观看了由熟悉和不熟悉的人物照片组成的快速序列视觉呈现。将ErPR与事件相关电位(ERP)进行比较。与陌生人面孔相比,熟悉面孔的ERP和ErPR振幅显著更大。基于ERP的认证系统使用线性支持向量机分类器表现出完美的准确性。使用ErPR特征训练的二次判别分析分类器实现了高精度(97%)以及低误识率(0.03)和拒识率(0.03)。ERP和ErPR振幅之间的相关系数为0.452 - 0.829,相应的布兰德-奥特曼图显示它们之间具有相当好的一致性。基于ErPR的认证系统允许在AR环境中通过低成本、非侵入性且易于实施的技术对人员进行非接触式认证,而无需承担传感器附着的负担。