Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro, Querétaro 76230, México
Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro, Querétaro 76230, México.
Genetics. 2018 Apr;208(4):1631-1641. doi: 10.1534/genetics.117.300589. Epub 2018 Jan 24.
We present a conceptually simple, sensitive, precise, and essentially nonstatistical solution for the analysis of genome variation in haploid organisms. The generation of a Perfect Match Genomic Landscape (PMGL), which computes intergenome identity with single nucleotide resolution, reveals signatures of variation wherever a query genome differs from a reference genome. Such signatures encode the precise location of different types of variants, including single nucleotide variants, deletions, insertions, and amplifications, effectively introducing the concept of a general signature of variation. The precise nature of variants is then resolved through the generation of targeted alignments between specific sets of sequence reads and known regions of the reference genome. Thus, the perfect match logic decouples the identification of the location of variants from the characterization of their nature, providing a unified framework for the detection of genome variation. We assessed the performance of the PMGL strategy via simulation experiments. We determined the variation profiles of natural genomes and of a synthetic chromosome, both in the context of haploid yeast strains. Our approach uncovered variants that have previously escaped detection. Moreover, our strategy is ideally suited for further refining high-quality reference genomes. The source codes for the automated PMGL pipeline have been deposited in a public repository.
我们提出了一种概念简单、灵敏、精确且基本上非统计学的方法,用于分析单倍体生物的基因组变异。生成完美匹配基因组景观(PMGL),以单核苷酸分辨率计算基因组间的同一性,在查询基因组与参考基因组不同的任何地方都能揭示变异的特征。这些特征编码了不同类型变异的精确位置,包括单核苷酸变异、缺失、插入和扩增,有效地引入了变异的一般特征的概念。然后,通过在特定序列读取集和参考基因组的已知区域之间生成靶向比对,来确定变异的精确性质。因此,完美匹配逻辑将变异位置的识别与性质的特征化解耦,为检测基因组变异提供了一个统一的框架。我们通过模拟实验评估了 PMGL 策略的性能。我们确定了自然基因组和人工合成染色体的变异谱,这两种情况都是在单倍体酵母菌株的背景下进行的。我们的方法揭示了以前未被检测到的变异。此外,我们的策略非常适合进一步完善高质量的参考基因组。自动化 PMGL 管道的源代码已存储在公共存储库中。