Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Oncogene. 2018 Apr;37(15):1991-2007. doi: 10.1038/s41388-017-0081-3. Epub 2018 Jan 25.
Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and histologically resembles developing skeletal muscle. Alveolar rhabdomyosarcoma (ARMS) is an aggressive subtype with a higher rate of metastasis and poorer prognosis. The majority of ARMS tumors (80%) harbor a PAX3-FOXO1 or less commonly a PAX7-FOXO1 fusion gene. The presence of either the PAX3-FOXO1 or PAX7-FOXO1 fusion gene foretells a poorer prognosis resulting in clinical re-classification as either fusion-positive (FP-RMS) or fusion-negative RMS (FN-RMS). The PAX3/7-FOXO1 fusion genes result in the production of a rogue transcription factors that drive FP-RMS pathogenesis and block myogenic differentiation. Despite knowing the molecular driver of FP-RMS, targeted therapies have yet to make an impact for patients, highlighting the need for a greater understanding of the molecular consequences of PAX3-FOXO1 and its target genes including microRNAs. Here we show FP-RMS patient-derived xenografts and cell lines display a distinct microRNA expression pattern. We utilized both loss- and gain-of function approaches in human cell lines with knockdown of PAX3-FOXO1 in FP-RMS cell lines and expression of PAX3-FOXO1 in human myoblasts and identified microRNAs both positively and negatively regulated by the PAX3-FOXO1 fusion protein. We demonstrate PAX3-FOXO1 represses miR-221/222 that functions as a tumor suppressing microRNA through the negative regulation of CCND2, CDK6, and ERBB3. In contrast, miR-486-5p is transcriptionally activated by PAX3-FOXO1 and promotes FP-RMS proliferation, invasion, and clonogenic growth. Inhibition of miR-486-5p in FP-RMS xenografts decreased tumor growth, illustrating a proof of principle for future therapeutic intervention. Therefore, PAX3-FOXO1 regulates key microRNAs that may represent novel therapeutic vulnerabilities in FP-RMS.
横纹肌肉瘤是儿童中最常见的软组织肉瘤,在组织学上类似于发育中的骨骼肌。腺泡状横纹肌肉瘤 (ARMS) 是一种侵袭性亚型,转移率较高,预后较差。大多数 ARMS 肿瘤(80%)存在 PAX3-FOXO1 或较少见的 PAX7-FOXO1 融合基因。存在 PAX3-FOXO1 或 PAX7-FOXO1 融合基因预示着预后较差,导致临床重新分类为融合阳性(FP-RMS)或融合阴性 RMS(FN-RMS)。PAX3/7-FOXO1 融合基因导致产生流氓转录因子,驱动 FP-RMS 发病机制并阻止成肌分化。尽管了解 FP-RMS 的分子驱动因素,但针对这些靶点的治疗方法尚未对患者产生影响,这突显了需要更深入了解 PAX3-FOXO1 及其靶基因(包括 microRNAs)的分子后果。在这里,我们展示了 FP-RMS 患者来源的异种移植和细胞系显示出独特的 microRNA 表达模式。我们在 FP-RMS 细胞系中使用了失活和过表达方法,在 FP-RMS 细胞系中敲低 PAX3-FOXO1,在人类成肌细胞中表达 PAX3-FOXO1,并鉴定了 PAX3-FOXO1 融合蛋白正调控和负调控的 microRNAs。我们证明 PAX3-FOXO1 抑制 miR-221/222,通过负调控 CCND2、CDK6 和 ERBB3,作为一种肿瘤抑制 microRNA。相比之下,miR-486-5p 被 PAX3-FOXO1 转录激活,并促进 FP-RMS 增殖、侵袭和克隆形成生长。在 FP-RMS 异种移植中抑制 miR-486-5p 可减少肿瘤生长,为未来的治疗干预提供了原理证明。因此,PAX3-FOXO1 调节关键的 microRNAs,这些 microRNAs可能代表 FP-RMS 中的新的治疗弱点。