文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

眼内动脉化疗治疗视网膜母细胞瘤的首例小动物(兔)模型的药代动力学、组织定位、毒性和疗效。

Pharmacokinetics, Tissue Localization, Toxicity, and Treatment Efficacy in the First Small Animal (Rabbit) Model of Intra-Arterial Chemotherapy for Retinoblastoma.

机构信息

Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.

Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States.

出版信息

Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):446-454. doi: 10.1167/iovs.17-22302.


DOI:10.1167/iovs.17-22302
PMID:29368001
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5783625/
Abstract

PURPOSE: Current intra-arterial chemotherapy (IAC) drug regimens for retinoblastoma have ocular and vascular toxicities. No small-animal model of IAC exists to test drug efficacy and toxicity in vivo for IAC drug discovery. The purpose of this study was to develop a small-animal model of IAC and to analyze the ocular tissue penetration, distribution, pharmacokinetics, and treatment efficacy. METHODS: Following selective ophthalmic artery (OA) catheterization, melphalan (0.4 to 1.2 mg/kg) was injected. For pharmacokinetic studies, rabbits were euthanized at 0.5, 1, 2, 4, or 6 hours following intra-OA infusion. Drug levels were determined in vitreous, retina, and blood by liquid chromatography tandem mass spectrometry. To assess toxicity, angiograms, photography, fluorescein angiography, and histopathology were performed. For in situ tissue drug distribution, matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) was performed. The tumor model was created by combined subretinal/intravitreal injection of human WERI-Rb1 retinoblastoma cells; the tumor was treated in vivo with intra-arterial melphalan or saline; and induction of tumor death was measured by cleaved caspase-3 activity. RESULTS: OA was selectively catheterized for 79 of 79 (100%) eyes in 47 of 47 (100%) rabbits, and melphalan was delivered successfully in 31 of 31 (100%) eyes, without evidence of vascular occlusion or retinal damage. For treated eyes, maximum concentration (Cmax) in the retina was 4.95 μM and area under the curve (AUC0→∞) was 5.26 μM·h. Treated eye vitreous Cmax was 2.24 μM and AUC0→∞ was 4.19 μM·h. Vitreous Cmax for the treated eye was >100-fold higher than for the untreated eye (P = 0.01), and AUC0→∞ was ∼50-fold higher (P = 0.01). Histology-directed MALDI-IMS revealed highest drug localization within the retina. Peripheral blood Cmax was 1.04 μM and AUC0→∞ was 2.07 μM·h. Combined subretinal/intravitreal injection of human retinoblastoma cells led to intra-retinal tumors and subretinal/vitreous seeds, which could be effectively killed in vivo with intra-arterial melphalan. CONCLUSIONS: This first small-animal model of IAC has excellent vitreous and retinal tissue drug penetration, achieving levels sufficient to kill human retinoblastoma cells, facilitating future IAC drug discovery.

摘要

目的:目前用于视网膜母细胞瘤的动脉内化疗(IAC)药物方案具有眼和血管毒性。目前还没有小动物模型可以用于体内测试 IAC 药物的疗效和毒性,以进行 IAC 药物发现。本研究的目的是开发一种小动物 IAC 模型,并分析眼组织穿透性、分布、药代动力学和治疗效果。

方法:选择性眼动脉(OA)导管插入后,注射马法兰(0.4 至 1.2mg/kg)。为了进行药代动力学研究,在 OA 内输注后 0.5、1、2、4 或 6 小时处死兔子。通过液相色谱串联质谱法在玻璃体液、视网膜和血液中测定药物水平。为了评估毒性,进行了血管造影、摄影、荧光素血管造影和组织病理学检查。为了进行组织内药物分布分析,采用基质辅助激光解吸/电离成像质谱(MALDI-IMS)。通过视网膜下/玻璃体内联合注射人 WERI-Rb1 视网膜母细胞瘤细胞来创建肿瘤模型;用动脉内马法兰或生理盐水对肿瘤进行体内治疗;并通过 cleaved caspase-3 活性测量诱导的肿瘤死亡。

结果:在 47 只(100%)兔子的 79 只(100%)眼中成功选择性导管插入 OA,在 31 只(100%)眼中成功输送马法兰,没有血管阻塞或视网膜损伤的证据。对于治疗眼,视网膜中的最大浓度(Cmax)为 4.95μM,曲线下面积(AUC0→∞)为 5.26μM·h。治疗眼玻璃体 Cmax 为 2.24μM,AUC0→∞ 为 4.19μM·h。治疗眼玻璃体 Cmax 比未治疗眼高 100 多倍(P=0.01),AUC0→∞ 高约 50 倍(P=0.01)。基于组织学的 MALDI-IMS 显示药物在视网膜中的定位最高。外周血 Cmax 为 1.04μM,AUC0→∞ 为 2.07μM·h。人视网膜母细胞瘤细胞的视网膜下/玻璃体内联合注射导致视网膜内肿瘤和视网膜下/玻璃体内种子,可通过动脉内马法兰有效杀死体内肿瘤。

结论:这是第一个小动物 IAC 模型,具有出色的玻璃体液和视网膜组织药物穿透性,达到足以杀死人视网膜母细胞瘤细胞的水平,为未来的 IAC 药物发现提供了便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/6c9ccd8c372a/i1552-5783-59-1-446-f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/3dbfba7e206b/i1552-5783-59-1-446-f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/118bcdae61ab/i1552-5783-59-1-446-f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/65b103ae0641/i1552-5783-59-1-446-f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/7242ef3c3e49/i1552-5783-59-1-446-f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/9a2e4c498639/i1552-5783-59-1-446-f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/6c9ccd8c372a/i1552-5783-59-1-446-f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/3dbfba7e206b/i1552-5783-59-1-446-f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/118bcdae61ab/i1552-5783-59-1-446-f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/65b103ae0641/i1552-5783-59-1-446-f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/7242ef3c3e49/i1552-5783-59-1-446-f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/9a2e4c498639/i1552-5783-59-1-446-f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ea/5783625/6c9ccd8c372a/i1552-5783-59-1-446-f06.jpg

相似文献

[1]
Pharmacokinetics, Tissue Localization, Toxicity, and Treatment Efficacy in the First Small Animal (Rabbit) Model of Intra-Arterial Chemotherapy for Retinoblastoma.

Invest Ophthalmol Vis Sci. 2018-1-1

[2]
Intravitreal melphalan hydrochloride vs propylene glycol-free melphalan for retinoblastoma vitreous seeds: Efficacy, toxicity and stability in rabbits models and patients.

Exp Eye Res. 2021-3

[3]
Rabbit Model of Intra-Arterial Chemotherapy Toxicity Demonstrates Retinopathy and Vasculopathy Related to Drug and Dose, Not Procedure or Approach.

Invest Ophthalmol Vis Sci. 2019-3-1

[4]
Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model.

Invest Ophthalmol Vis Sci. 2021-11-1

[5]
Intra-arterial chemotherapy for retinoblastoma: report No. 1, control of retinal tumors, subretinal seeds, and vitreous seeds.

Arch Ophthalmol. 2011-11

[6]
Local and systemic toxicity of intravitreal melphalan for vitreous seeding in retinoblastoma: a preclinical and clinical study.

Ophthalmology. 2014-5-10

[7]
Risk Factors for Acute Choroidal Ischemia after Intra-arterial Melphalan for Retinoblastoma: The Role of the Catheterization Approach.

Ophthalmology. 2021-5

[8]
A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results.

Ophthalmology. 2008-8

[9]
Pharmacokinetic analysis of melphalan after superselective ophthalmic artery infusion in preclinical models and retinoblastoma patients.

Invest Ophthalmol Vis Sci. 2012-6-28

[10]
Evaluation of intravitreal topotecan dose levels, toxicity and efficacy for retinoblastoma vitreous seeds: a preclinical and clinical study.

Br J Ophthalmol. 2022-2

引用本文的文献

[1]
Suprachoroidal Injection of Topotecan for Retinoblastoma: A Preclinical Study.

Ophthalmol Sci. 2025-7-4

[2]
Electroretinographic changes in the inner and outer retinal layers before and after intravenous chemotherapy for retinoblastoma.

Indian J Ophthalmol. 2024-8-1

[3]
Aqueous VEGF-A Levels as a Liquid Biopsy Biomarker of Retinoblastoma Vitreous Seed Response to Therapy.

Invest Ophthalmol Vis Sci. 2024-6-3

[4]
Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era.

Cancers (Basel). 2024-4-22

[5]
Superselective Arterial Hyaluronidase Thrombolysis is an Effective Treatment for Hyaluronic Acid-Induced Retinal Artery Occlusion: Study in a Rabbit Model.

Aesthetic Plast Surg. 2024-6

[6]
Emerging New Therapeutics for Retinoblastoma.

Ocul Oncol Pathol. 2022-11

[7]
Treatment of Retinoblastoma: What Is the Latest and What Is the Future.

Front Oncol. 2022-4-1

[8]
Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model.

Invest Ophthalmol Vis Sci. 2021-11-1

[9]
International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit.

J Toxicol Pathol. 2021

[10]
Efficacy, Toxicity, and Pharmacokinetics of Intra-Arterial Chemotherapy Versus Intravenous Chemotherapy for Retinoblastoma in Animal Models and Patients.

Transl Vis Sci Technol. 2021-9-1

本文引用的文献

[1]
Disparities in Retinoblastoma Presentation, Treatment, and Outcomes in Developed and Less-Developed Countries.

Semin Ophthalmol. 2016

[2]
Unilateral Retinoblastoma Managed With Intravenous Chemotherapy Versus Intra-Arterial Chemotherapy. Outcomes Based on the International Classification of Retinoblastoma.

Asia Pac J Ophthalmol (Phila). 2016

[3]
Intra-Arterial Chemotherapy (Ophthalmic Artery Chemosurgery) for Group D Retinoblastoma.

PLoS One. 2016-1-12

[4]
Advanced Unilateral Retinoblastoma: The Impact of Ophthalmic Artery Chemosurgery on Enucleation Rate and Patient Survival at MSKCC.

PLoS One. 2015-12-28

[5]
Stability of melphalan solution for intravitreal injection for retinoblastoma.

JAMA Ophthalmol. 2014-11

[6]
Clinical pharmacokinetics of intra-arterial melphalan and topotecan combination in patients with retinoblastoma.

Ophthalmology. 2013-12-17

[7]
A 10-year experience of outcome in chemotherapy-treated hereditary retinoblastoma.

Acta Ophthalmol. 2014-8

[8]
Carboplatin +/- topotecan ophthalmic artery chemosurgery for intraocular retinoblastoma.

PLoS One. 2013-8-21

[9]
Chemoreduction improves eye retention in patients with retinoblastoma: a report from the German Retinoblastoma Reference Centre.

Br J Ophthalmol. 2013-7-17

[10]
Superselective intraophthalmic artery chemotherapy in a nonhuman primate model: histopathologic findings.

JAMA Ophthalmol. 2013-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索