Suppr超能文献

通过有噪声天线实现稳健的光捕获。

Robust light harvesting by a noisy antenna.

作者信息

Malý Pavel, Gardiner Alastair T, Cogdell Richard J, van Grondelle Rienk, Mančal Tomáš

机构信息

Department of Biophysics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boeleaan 1081, 1081HV Amsterdam, The Netherlands.

出版信息

Phys Chem Chem Phys. 2018 Feb 7;20(6):4360-4372. doi: 10.1039/c7cp06139k.

Abstract

Photosynthetic light harvesting can be very efficient in solar energy conversion while taking place in a highly disordered and noisy physiological environment. This efficiency is achieved by the ultrafast speed of the primary photosynthetic processes, which is enabled by a delicate interplay of quantum effects, thermodynamics and environmental noise. The primary processes take place in light-harvesting antennas built from pigments bound to a fluctuating protein scaffold. Here, we employ ultrafast single-molecule spectroscopy to follow fluctuations of the femtosecond energy transfer times in individual LH2 antenna complexes of purple bacteria. By combining single molecule results with ensemble spectroscopy through a unified theoretical description of both, we show how the protein fluctuations alter the excitation energy transfer dynamics. We find that from the thirteen orders of magnitude of possible timescales from picoseconds to minutes, the relevant fluctuations occur predominantly on a biological timescale of seconds, i.e. in the domain of slow protein motion. The measured spectra and dynamics can be explained by the protein modulating pigment excitation energies only. Moreover, we find that the small spread of pigment mean energies allows for excitation delocalization between the coupled pigments to survive. These unique features provide fast energy transport even in the presence of disorder. We conclude that this is the mechanism that enables LH2 to operate as a robust light-harvester, in spite of its intrinsically noisy biological environment.

摘要

光合作用中的光捕获在太阳能转换方面可以非常高效,同时它发生在高度无序且嘈杂的生理环境中。这种效率是由初级光合作用过程的超快速度实现的,而这一速度是由量子效应、热力学和环境噪声之间微妙的相互作用所促成的。初级过程发生在由与波动的蛋白质支架结合的色素构成的光捕获天线中。在这里,我们采用超快单分子光谱技术来跟踪紫色细菌单个LH2天线复合物中飞秒能量转移时间的波动情况。通过将单分子结果与系综光谱相结合,并对两者进行统一的理论描述,我们展示了蛋白质波动如何改变激发能量转移动力学。我们发现,在从皮秒到分钟的可能时间尺度的十三个数量级中,相关波动主要发生在秒的生物学时间尺度上,即在缓慢蛋白质运动的范围内。所测量的光谱和动力学仅通过蛋白质调节色素激发能量即可得到解释。此外,我们发现色素平均能量的小范围分布使得耦合色素之间的激发离域得以维持。这些独特特征即使在存在无序的情况下也能实现快速的能量传输。我们得出结论,这就是使LH2尽管处于本质上嘈杂的生物环境中仍能作为一种强大的光捕获器发挥作用的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8678/5901068/0384a6f86665/c7cp06139k-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验