Multi-Functional Nano/Bio Electronics Laboratory, Sungkyunkwan University, Gyeonggi, 16419, South Korea.
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
Adv Mater. 2018 Mar;30(12):e1705542. doi: 10.1002/adma.201705542. Epub 2018 Jan 25.
Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications.
基于通过改进的常压化学气相沉积 (APCVD) 合成的多层二硒化钼 (MoSe ) 的薄膜晶体管 (TFT) 表现出出色的光电响应率 (103.1 A W ),而通常认为多层过渡金属二硫属化物 (TMDs) 的光学响应受到显著限制,因为它们具有间接带隙和低效的光激发过程。在这里,寻求在合成的多层 MoSe TFT 中实现如此高光电响应率的基本原因。观察到 APCVD 生长的 MoSe 的独特结构特征,其中在基面之间存在间隙 Mo 原子,而不同于通常的 2H 相 TMDs。密度泛函理论计算和光致转移特性表明,这种间隙 Mo 原子在带隙中形成光反应性电子态。模型表明,巨大的光放大归因于亚带隙状态中的俘获空穴,从而产生显著的光伏效应。在这项研究中,确定了具有合成 MoSe 光电晶体管的高响应率的基本原因,这为未来用于可穿戴传感器应用的高性能多功能 2D 材料器件提供了新途径。