Zhang Yuqin, Wang Da, Wei Guanping, Li Baolei, Mao Zongchang, Xu Si-Min, Tang Shaobin, Jiang Jun, Li Zhenyu, Wang Xijun, Xu Xin
Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China.
JACS Au. 2024 Mar 22;4(4):1509-1520. doi: 10.1021/jacsau.4c00030. eCollection 2024 Apr 22.
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
在基于过渡金属(TM)的单原子催化剂(SAC)中,精确控制自旋态对于提升电催化剂的功能至关重要,但这也带来了重大的科学挑战。通过密度泛函理论(DFT)计算,我们提出了一种新颖的机制,以精确调节MoS双层表面吸附的Fe原子的自旋态。这是通过策略性地将一个TM原子插入MoS双层的层间空间来实现的。我们的结果表明,这些经过策略性插入的TM原子可以诱导显著的界面电荷极化,从而有效地控制表面Fe位点上的电荷转移和自旋极化。特别是,通过改变插入的TM原子的种类及其空位填充位点,可以实现表面Fe位点自旋态从低到中再到高的连续调节,这可以使用由材料易于获取的固有特性组成的描述符进行准确描述。以电化学氮气还原反应(eNRR)作为典型反应,我们发现了调控后的自旋与铁基SAC催化活性之间普遍存在的火山型关系。这一发现与传统研究中常见的线性标度关系形成对比,并提供了一种通过界面工程调控SAC活性的有力新方法。