National University of Singapore (Suzhou) Research Institute , 377 Lin Quan Street, Suzhou, Jiang Su 215123, China.
Department of Physics, National University of Singapore , 117542 Singapore.
ACS Nano. 2018 Feb 27;12(2):2070-2077. doi: 10.1021/acsnano.8b00398. Epub 2018 Jan 30.
Structures determine properties of materials, and controllable phase transitions are, therefore, highly desirable for exploring exotic physics and fabricating devices. We report a direct observation of a controllable semiconductor-metal phase transition in bilayer tungsten diselenide (WSe) with potassium (K) surface functionalization. Through the integration of in situ field-effect transistors, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy measurements, and first-principles calculations, we identify that the electron doping from K adatoms drives bilayer WSe from a 2H phase semiconductor to a 1T' phase metal. The phase transition mechanism is satisfactorily explained by the electronic structures and energy alignment of the 2H and 1T' phases. This explanation can be generally applied to understand doping-induced phase transitions in two-dimensional (2D) structures. Finally, the associated dramatic changes of electronic structures and electrical conductance make this controllable semiconductor-metal phase transition of interest for 2D semiconductor-based electronic and optoelectronic devices.
结构决定材料的性质,因此可控的相转变对于探索奇异物理和制造器件是非常理想的。我们报告了在双层二硒化钨(WSe)中通过钾(K)表面功能化实现可控半导体-金属相转变的直接观察。通过原位场效应晶体管、X 射线光电子能谱、紫外光电子能谱测量和第一性原理计算的结合,我们确定来自 K adatoms 的电子掺杂将双层 WSe 从 2H 相半导体驱动到 1T'相金属。通过 2H 和 1T'相的电子结构和能量排列,很好地解释了相转变机制。这种解释可以普遍应用于理解二维(2D)结构中掺杂诱导的相转变。最后,电子结构和电导的相关剧烈变化使得这种可控的半导体-金属相转变成为基于 2D 半导体的电子和光电设备的关注点。