Suppr超能文献

在淹水条件下,大豆下胚轴通气木质部形成需要来自叶片的蔗糖供应。

Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions.

机构信息

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan.

Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, P.R. China.

出版信息

Ann Bot. 2018 Mar 14;121(4):723-732. doi: 10.1093/aob/mcx205.

Abstract

BACKGROUND AND AIMS

Soil waterlogging often causes oxygen deficiency in the root systems of plants and severely inhibits plant growth. Formation of aerenchyma - interconnected spaces that facilitate the movement of gases between and within the aerial and submerged parts of plants - is an adaptive trait for coping with waterlogged conditions. Soybean (Glycine max) forms porous secondary tissues known as aerenchymatous phellem (AP), which are derived from the outermost cell layer of phellogen. To understand what factors other than waterlogging are involved in phellogen and AP formation, we examined how their formation in soybean seedlings was affected by darkness, CO2 deficiency and blockage of phloem transport.

METHODS

Aerenchymatous phellem and phellogen formation were expressed as area ratios in cross-sections of hypocotyl. CO2 was depleted by use of calcium oxide and sodium hydroxide. Phloem transport was blocked by heat-girdling of hypocotyls. Sucrose levels were measured by spectrophotometry.

KEY RESULTS

Under light conditions, waterlogging induced the accumulation of high concentrations of sucrose in hypocotyls, followed by phellogen and AP formation in hypocotyls. Phellogen formation and AP formation were inhibited by darkness, CO2 deficiency and blockage of phloem transport. Phellogen formation and AP formation were also inhibited by excision of shoots above the epicotyl, but they recovered following application of sucrose (but not glucose or fructose application) to the cut surface.

CONCLUSIONS

The results demonstrate that sucrose derived from leaves is essential for AP and phellogen formation in soybean hypocotyls under waterlogged soil conditions. Maintenance of a high sucrose concentration is thus essential for the development of phellogen and AP and the differentiation of phellogen to AP.

摘要

背景与目的

土壤积水常常导致植物根系缺氧,严重抑制植物生长。通气组织的形成——植物地上和水下部分之间气体流动的连通空间——是植物适应水淹条件的一种特性。大豆(Glycine max)形成称为通气性木栓(AP)的多孔次生组织,其来源于木栓形成层的最外层细胞。为了了解除水淹以外的因素如何参与木栓形成层和 AP 的形成,我们研究了黑暗、CO2 缺乏和韧皮部运输阻断对大豆幼苗中它们形成的影响。

方法

通过下胚轴横切面上的面积比来表示通气性木栓和木栓形成层的形成。通过使用氧化钙和氢氧化钠来耗尽 CO2。通过对下胚轴进行热环割来阻断韧皮部运输。通过分光光度法测量蔗糖水平。

主要结果

在光照条件下,水淹诱导下胚轴中蔗糖浓度升高,随后在下胚轴中形成木栓形成层和 AP。黑暗、CO2 缺乏和韧皮部运输阻断抑制木栓形成层形成和 AP 形成。去除上胚轴以上的茎也抑制木栓形成层形成和 AP 形成,但在将蔗糖(而非葡萄糖或果糖)应用于切口表面后,它们会恢复。

结论

结果表明,在水淹土壤条件下,来自叶片的蔗糖对于大豆下胚轴中 AP 和木栓形成层的形成是必需的。因此,维持高蔗糖浓度对于木栓形成层和 AP 的发育以及木栓形成层向 AP 的分化是必不可少的。

相似文献

引用本文的文献

1
A review of soil waterlogging impacts, mechanisms, and adaptive strategies.土壤涝渍的影响、机制及适应策略综述
Front Plant Sci. 2025 Feb 13;16:1545912. doi: 10.3389/fpls.2025.1545912. eCollection 2025.
3

本文引用的文献

2
Flooding tolerance of forage legumes.饲用豆科植物的耐淹性。
J Exp Bot. 2017 Apr 1;68(8):1851-1872. doi: 10.1093/jxb/erw239.
6
Flood adaptive traits and processes: an overview.洪水适应性状与过程:概述
New Phytol. 2015 Apr;206(1):57-73. doi: 10.1111/nph.13209. Epub 2015 Jan 7.
7
Sugar demand, not auxin, is the initial regulator of apical dominance.糖需求而非生长素是顶端优势的初始调控因子。
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6092-7. doi: 10.1073/pnas.1322045111. Epub 2014 Apr 7.
8
Sucrose metabolism: gateway to diverse carbon use and sugar signaling.蔗糖代谢:通向多样碳利用和糖信号的大门。
Annu Rev Plant Biol. 2014;65:33-67. doi: 10.1146/annurev-arplant-050213-040251. Epub 2014 Feb 22.
9
Sugar signals and the control of plant growth and development.糖信号与植物生长发育的调控。
J Exp Bot. 2014 Mar;65(3):799-807. doi: 10.1093/jxb/ert474. Epub 2014 Jan 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验