Research Department of Clinical Epidemiology, The Farr Institute of Health Informatics Research, University College London, 222 Euston Road, London NW1 2DA, UK.
The National Institute for Health Research, Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, 222 Euston Road, London NW1 2DA, UK.
Eur Heart J. 2018 Apr 21;39(16):1481-1495. doi: 10.1093/eurheartj/ehx487.
Cohorts of millions of people's health records, whole genome sequencing, imaging, sensor, societal and publicly available data present a rapidly expanding digital trace of health. We aimed to critically review, for the first time, the challenges and potential of big data across early and late stages of translational cardiovascular disease research.
We sought exemplars based on literature reviews and expertise across the BigData@Heart Consortium. We identified formidable challenges including: data quality, knowing what data exist, the legal and ethical framework for their use, data sharing, building and maintaining public trust, developing standards for defining disease, developing tools for scalable, replicable science and equipping the clinical and scientific work force with new inter-disciplinary skills. Opportunities claimed for big health record data include: richer profiles of health and disease from birth to death and from the molecular to the societal scale; accelerated understanding of disease causation and progression, discovery of new mechanisms and treatment-relevant disease sub-phenotypes, understanding health and diseases in whole populations and whole health systems and returning actionable feedback loops to improve (and potentially disrupt) existing models of research and care, with greater efficiency. In early translational research we identified exemplars including: discovery of fundamental biological processes e.g. linking exome sequences to lifelong electronic health records (EHR) (e.g. human knockout experiments); drug development: genomic approaches to drug target validation; precision medicine: e.g. DNA integrated into hospital EHR for pre-emptive pharmacogenomics. In late translational research we identified exemplars including: learning health systems with outcome trials integrated into clinical care; citizen driven health with 24/7 multi-parameter patient monitoring to improve outcomes and population-based linkages of multiple EHR sources for higher resolution clinical epidemiology and public health.
High volumes of inherently diverse ('big') EHR data are beginning to disrupt the nature of cardiovascular research and care. Such big data have the potential to improve our understanding of disease causation and classification relevant for early translation and to contribute actionable analytics to improve health and healthcare.
数以百万计的人群健康记录、全基因组测序、成像、传感器、社会和公共数据构成了快速扩展的健康数字轨迹。我们旨在首次批判性地回顾大数据在转化心血管疾病研究的早期和晚期阶段所面临的挑战和潜力。
我们根据文献综述和 BigData@Heart 联盟的专业知识,寻找范例。我们确定了一些严峻的挑战,包括:数据质量、了解现有数据、使用这些数据的法律和伦理框架、数据共享、建立和维护公众信任、为定义疾病制定标准、开发用于可扩展、可复制科学的工具以及为临床和科学界提供新的跨学科技能。声称大数据健康记录数据具有以下优势:从出生到死亡、从分子到社会规模,更丰富的健康和疾病概况;加速对疾病病因和进展的理解、发现新的机制和与治疗相关的疾病亚型、了解整个人群和整个卫生系统的健康和疾病、以及将可操作的反馈回路用于改善(并可能破坏)现有的研究和护理模式,从而提高效率。在早期转化研究中,我们确定了一些范例,包括:发现基本的生物学过程,例如将外显子序列与终身电子健康记录(EHR)联系起来(例如,人类敲除实验);药物开发:基因组方法验证药物靶点;精准医学:例如,将 DNA 整合到医院 EHR 中进行预先的药物基因组学。在晚期转化研究中,我们确定了一些范例,包括:学习型健康系统,将结局试验纳入临床护理;公民驱动的健康,24/7 多参数患者监测,以改善结果,并为更高分辨率的临床流行病学和公共卫生建立多个 EHR 来源的人群联系。
大量固有的多样化(“大”)EHR 数据开始打破心血管研究和护理的性质。这种大数据有可能提高我们对疾病病因和分类的理解,为早期转化做出贡献,并提供可操作的分析结果,以改善健康和医疗保健。