Suppr超能文献

迈向全国性注册登记:分析心力衰竭患者的大数据

Approaching a nationwide registry: analyzing big data in patients with heart failure.

作者信息

Çöllüoğlu Tuğçe, Şahin Anıl, Çelik Ahmet, Kanik Emine Arzu

机构信息

Department of Cardiology, Faculty of Medicine, Karabük University, Karabük, Turkiye.

Department of Cardiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkiye.

出版信息

Turk J Med Sci. 2024 May 7;54(7):1455-1460. doi: 10.55730/1300-0144.5931. eCollection 2024.

Abstract

BACKGROUND/AIM: Randomized controlled trials usually lack generabilizity to real-world context. Real-world data, enabled by the use of big data analysis, serve as a connection between the results of trials and the implementation of findings in clinical practice. Nevertheless, using big data in the healthcare has difficulties such as ensuring data quality and consistency. This article aimed to examine the challenges in accessing and utilizing healthcare big data for heart failure (HF) research, drawing from experiences in creating a nationwide HF registry in Türkiye.

MATERIALS AND METHODS

We established a team including cardiologists, HF specialists, biostatistics experts, and data analysts. We searched certain key words related to HF, including heart failure, nationwide study, epidemiology, incidence, prevalence, outcomes, comorbidities, medical therapy, and device therapy. We followed each step of the STROBE guidelines for the preparation of a nationwide study. We obtained big data for the TRends-HF trial from the National Healthcare Data System. For the purpose of obtaining big data, we screened 85,279,553 healthcare records of Turkish citizens between January 1, 2016 and December 31, 2022.

RESULTS

We created a study cohort with the use of ICD-10 codes by cross-checking HF medication (n = 2,722,151). Concurrent comorbid conditions were determined using ICD-10 codes. All medications and procedures were screened according to ATC codes and SUT codes, respectively. Variables were placed in different columns. We employed SPSS 29.0, MedCalc, and E-PICOS statistical programs for statistical analysis. Phyton-based codes were created to analyze data that was unsuitable for interpretation by conventional statistical programs. We have no missing data for categorical variables. There was missing data for certain continuous variables. Propensity score matching analysis was employed to establish similarity among the studied groups, particularly when investigating treatment effects.

CONCLUSION

To accurately identify patients with HF using ICD-10 codes from big data and provide precise information, it is necessary to establish additional specific criteria for HF and use different statistical programs by experts for correctly analyzing big data.

摘要

背景/目的:随机对照试验通常缺乏在真实世界环境中的可推广性。通过大数据分析获得的真实世界数据,成为试验结果与临床实践中研究结果应用之间的桥梁。然而,在医疗保健领域使用大数据存在困难,比如确保数据质量和一致性。本文旨在借鉴在土耳其创建全国心力衰竭(HF)登记处的经验,探讨获取和利用医疗保健大数据进行HF研究面临的挑战。

材料与方法

我们组建了一个团队,成员包括心脏病专家、HF专家、生物统计学专家和数据分析师。我们搜索了与HF相关的某些关键词,包括心力衰竭、全国性研究、流行病学、发病率、患病率、结局、合并症、药物治疗和器械治疗。我们遵循STROBE指南的每一步来准备一项全国性研究。我们从国家医疗保健数据系统获取了TRends-HF试验的大数据。为了获取大数据,我们筛选了2016年1月1日至2022年12月31日期间土耳其公民的85279553份医疗记录。

结果

我们通过交叉核对HF药物(n = 2722151),使用ICD-10编码创建了一个研究队列。使用ICD-10编码确定并发合并症。所有药物和手术分别根据ATC编码和SUT编码进行筛选。变量被放置在不同的列中。我们使用SPSS 29.0、MedCalc和E-PICOS统计程序进行统计分析。创建了基于Python的代码来分析不适用于传统统计程序解释的数据。我们的分类变量没有缺失数据。某些连续变量存在缺失数据。倾向得分匹配分析用于在所研究的组之间建立相似性,特别是在研究治疗效果时。

结论

要使用大数据中的ICD-10编码准确识别HF患者并提供精确信息,有必要为HF建立额外的特定标准,并由专家使用不同的统计程序来正确分析大数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85a5/11673634/0ced7f9e733d/tjmed-54-07-1455f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验