QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands.
QuTech and Netherlands Organization for Applied Scientific Research (TNO), Stieltjesweg 1, 2628 CK Delft, Netherlands.
Science. 2018 Mar 9;359(6380):1123-1127. doi: 10.1126/science.aar4054. Epub 2018 Jan 25.
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot-based spin qubit registers.
单晶硅量子点中单个自旋的长相干时间使其成为量子计算的理想选择,但如何扩展自旋量子比特系统仍是一个悬而未决的问题。作为解决这一问题的第一步,我们展示了单个电子自旋和单个微波光子的强耦合。电子自旋被囚禁在硅双量子点中,微波光子被存储在片上高阻抗超导谐振器中。腔光子的电场分量直接耦合到双点中的电子的电荷偶极子,并且通过附近微磁体的强局部磁场梯度间接耦合到电子自旋。我们的研究结果为实现基于量子点的自旋量子比特寄存器的大型网络提供了途径。