Suppr超能文献

带电碳纳米材料中量子比特的第一性原理设计。

First-Principles Design of Qubits in Charged Carbon Nanomaterials.

作者信息

Yang Hongping, Wu Minghui, Xie Fengyan, Meng Dongli, Luo Jun, Zhu Jing

机构信息

Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.

School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

出版信息

Materials (Basel). 2025 May 23;18(11):2451. doi: 10.3390/ma18112451.

Abstract

Our first-principles calculations have unveiled a profound influence of varied external charges on the energy levels and spin distributions of zero-, one-, and two-dimensional carbon nanomaterials. By leveraging the Fermi distribution formula, we systematically analyze the temperature-dependent electron occupancy probabilities of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Notably, configurations with specific additional electron loads exhibit a stable total occupancy of HOMO + LUMO equal to 1 across a wide temperature range, forming a robust basis for orbital qubits. This stability persists even under Fermi energy corrections, demonstrating minimal temperature sensitivity up to 300 K. Furthermore, we identify a universal criterion-E + E = 2E-that governs qubit feasibility across diverse carbon nanostructures, independent of dimensionality or atom count. Experimental validation via charge injection methods (e.g., gate modulation or electron beam irradiation) is supported by existing precedents in carbon-based quantum devices. Our findings establish low-dimensional carbon nanomaterials as versatile, scalable platforms for quantum computing, combining thermal stability and dimensional adaptability, thus bridging theoretical insights with practical quantum engineering.

摘要

我们的第一性原理计算揭示了不同外部电荷对零维、一维和二维碳纳米材料的能级和自旋分布有着深远影响。通过利用费米分布公式,我们系统地分析了最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的温度依赖电子占据概率。值得注意的是,具有特定额外电子负载的构型在很宽的温度范围内表现出HOMO + LUMO的总占据数稳定等于1,为轨道量子比特形成了坚实基础。即使在费米能量校正下,这种稳定性依然存在,表明在高达300 K的温度下温度敏感性极小。此外,我们确定了一个通用标准——E + E = 2E——它决定了跨不同碳纳米结构的量子比特可行性,与维度或原子数无关。通过电荷注入方法(如栅极调制或电子束辐照)进行的实验验证得到了碳基量子器件现有先例的支持。我们的研究结果将低维碳纳米材料确立为用于量子计算的通用、可扩展平台,兼具热稳定性和维度适应性,从而将理论见解与实际量子工程联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/380c/12155717/2460cbf83b28/materials-18-02451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验