Flores-Gómez Carlos A, Escamilla Silva Eleazar M, Zhong Cheng, Dale Bruce E, da Costa Sousa Leonardo, Balan Venkatesh
1Departament of Chemical Engineering, Tecnológico Nacional de México, I. T. Celaya, Av. Tecnológico S/N, 38010 Celaya, Guanajuato Mexico.
4Department of Engineering, Tecnológico Nacional de México, I. T. Roque, Km 8 Carretera Celaya-J. Rosas, 38110 Celaya, Guanajuato Mexico.
Biotechnol Biofuels. 2018 Jan 16;11:7. doi: 10.1186/s13068-017-0995-6. eCollection 2018.
Agave-based alcoholic beverage companies generate thousands of tons of solid residues per year in Mexico. These agave residues might be used for biofuel production due to their abundance and favorable sustainability characteristics. In this work, agave leaf and bagasse residues from species and were subjected to pretreatment using the ammonia fiber expansion (AFEX) process. The pretreatment conditions were optimized using a response surface design methodology. We also identified commercial enzyme mixtures that maximize sugar yields for AFEX-pretreated agave bagasse and leaf matter, at ~ 6% glucan (w/w) loading enzymatic hydrolysis. Finally, the pretreated agave hydrolysates (at a total solids loading of ~ 20%) were used for ethanol fermentation using the glucose- and xylose-consuming strain 424A (LNH-ST), to determine ethanol yields at industrially relevant conditions.
Low-severity AFEX pretreatment conditions are required (100-120 °C) to enable efficient enzymatic deconstruction of the agave cell wall. These studies showed that AFEX-pretreated bagasse, leaf fiber, and bagasse gave ~ 85% sugar conversion during enzyme hydrolysis and over 90% metabolic yields of ethanol during fermentation without any washing step or nutrient supplementation. On the other hand, although lignocellulosic leaf gave high sugar conversions, the hydrolysate could not be fermented at high solids loadings, apparently due to the presence of natural inhibitory compounds.
These results show that AFEX-pretreated agave residues can be effectively hydrolyzed at high solids loading using an optimized commercial enzyme cocktail (at 25 mg protein/g glucan) producing > 85% sugar conversions and over 40 g/L bioethanol titers. These results show that AFEX technology has considerable potential to convert lignocellulosic agave residues to bio-based fuels and chemicals in a biorefinery.
在墨西哥,以龙舌兰为原料的酒精饮料公司每年会产生数千吨固体残渣。这些龙舌兰残渣因其数量丰富且具有良好的可持续性特征,可用于生物燃料生产。在本研究中,对龙舌兰属植物的叶片和蔗渣残渣采用氨纤维膨胀(AFEX)工艺进行预处理。使用响应面设计方法对预处理条件进行了优化。我们还确定了能使AFEX预处理的龙舌兰蔗渣和叶片物质在约6%葡聚糖(w/w)负载量的酶水解过程中糖产量最大化的商业酶混合物。最后,使用消耗葡萄糖和木糖的菌株424A(LNH-ST)对预处理的龙舌兰水解产物(总固体负载量约为20%)进行乙醇发酵,以确定在工业相关条件下的乙醇产量。
需要低强度的AFEX预处理条件(100 - 120°C)才能实现龙舌兰细胞壁的高效酶解。这些研究表明,AFEX预处理的龙舌兰蔗渣、叶片纤维和龙舌兰蔗渣在酶水解过程中糖转化率约为85%,在发酵过程中乙醇代谢产率超过90%,无需任何洗涤步骤或营养补充。另一方面,虽然木质纤维素含量高的龙舌兰叶片糖转化率高,但水解产物在高固体负载量下无法发酵,显然是由于存在天然抑制性化合物。
这些结果表明,AFEX预处理的龙舌兰残渣在使用优化的商业酶混合物(25 mg蛋白质/g葡聚糖)的情况下,在高固体负载量下可有效水解,糖转化率>85%,生物乙醇滴度超过40 g/L。这些结果表明,AFEX技术在生物精炼厂中将木质纤维素龙舌兰残渣转化为生物基燃料和化学品方面具有巨大潜力。