Zi-Wei Li, Li Chen-Wen, Wang Qing, Shi San-Jun, Hu Min, Zhang Qian, Cui Huan-Huan, Sun Jian-Bin, Zhou Min, Wu Guo-Lin, Dang Ji-Zheng, Lu Lai-Chun
J Biomed Nanotechnol. 2017 Jan;13(1):17-34. doi: 10.1166/jbn.2017.2324.
Wound healing is a complex pathophysiological process that occurs frequently in everyday pathology and remains a challenge during the treatment of trauma. Previously, we prepared silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNP) nanofibers via an electrospinning technique. These nanofibers promoted the proliferation of human skin fibroblasts (HSFs) and the expression of transforming growth factor TGF-β1 in the early stage of wound repair, although the specific mechanisms remain unclear. Therefore, considering that TGF-β1 has emerged as a major modulator of wound healing, the objective of this study was to further understand whether the molecular mechanisms responsible for PVA/COS-AgNP nanofiber-mediated wound healing include the TGF-β1/Smad signal transduction pathway. In this study, we used human skin fibroblasts (HSFs) to investigate the molecular and cellular mechanisms underlying PVA/COSAgNP nanofiber-mediated wound healing. Cell adhesion and proliferation experiments, immunofluorescence staining, hydroxyproline content measurements, flow cytometry, quantitative real-time PCR (qRT-PCR), and western blotting (WB) were used to analyze the wound healing mechanisms of human skin fibroblasts treated with various concentrations of PVA/COS-AgNP nanofibers and the combined application of silver nanofibers and SB431542 (an inhibitor of the TGF-β1 receptor kinase). Our study showed that PVA/COS-AgNP nanofibers markedly promoted fibroblast proliferation, collagen synthesis, and cell adherence. We also found that treating fibroblasts with PVA/COS-AgNP nanofibers stimulated cell cycle progression from G1 into the S and G2 phases, reducing the proportion of cells in the G0/G1 phase and inducing S and G2/M arrest. Importantly, the cell factors associated with the TGF-β1/Smad signal transduction pathway, such as TGF-β1, TGFβRI, TGFβRII, pSmad2, pSmad3, collagen I, collagen III, and fibronectin were also up-regulated. Moreover, this enhancing effect was markedly inhibited by the TGFβRI receptor inhibitor, SB431542. Therefore, the PVA/COS-AgNP nanofibers used to accelerate wound healing do so by activating the TGF-β1/Smad signal transduction pathway.
伤口愈合是一个复杂的病理生理过程,在日常病理学中经常发生,并且在创伤治疗过程中仍然是一个挑战。此前,我们通过静电纺丝技术制备了银纳米颗粒/壳寡糖/聚乙烯醇(PVA/COS-AgNP)纳米纤维。这些纳米纤维在伤口修复早期促进了人皮肤成纤维细胞(HSF)的增殖以及转化生长因子TGF-β1的表达,尽管具体机制尚不清楚。因此,鉴于TGF-β1已成为伤口愈合的主要调节因子,本研究的目的是进一步了解PVA/COS-AgNP纳米纤维介导伤口愈合的分子机制是否包括TGF-β1/Smad信号转导通路。在本研究中,我们使用人皮肤成纤维细胞(HSF)来研究PVA/COSAgNP纳米纤维介导伤口愈合的分子和细胞机制。通过细胞黏附与增殖实验、免疫荧光染色、羟脯氨酸含量测定、流式细胞术、定量实时PCR(qRT-PCR)和蛋白质免疫印迹(WB),分析不同浓度的PVA/COS-AgNP纳米纤维以及银纳米纤维与SB431542(一种TGF-β1受体激酶抑制剂)联合应用对人皮肤成纤维细胞伤口愈合机制的影响。我们的研究表明,PVA/COS-AgNP纳米纤维显著促进了成纤维细胞的增殖、胶原蛋白合成和细胞黏附。我们还发现,用PVA/COS-AgNP纳米纤维处理成纤维细胞可刺激细胞周期从G1期进入S期和G2期,减少G0/G1期细胞比例并诱导S期和G2/M期阻滞。重要的是,与TGF-β1/Smad信号转导通路相关的细胞因子,如TGF-β1、TGFβRI、TGFβRII、pSmad2、pSmad3、胶原蛋白I、胶原蛋白III和纤连蛋白也上调。此外,这种增强作用被TGFβRI受体抑制剂SB431542显著抑制。因此,用于加速伤口愈合的PVA/COS-AgNP纳米纤维是通过激活TGF-β1/Smad信号转导通路来实现的。