Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire; Department of Biomedical Data Science, Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
Biol Psychiatry. 2018 Aug 15;84(4):265-277. doi: 10.1016/j.biopsych.2017.11.025. Epub 2017 Dec 2.
Phosphatase and tensin homolog (PTEN) negatively regulates downstream protein kinase B signaling, resulting in decreased cellular growth and proliferation. PTEN is mutated in a subset of children with autism spectrum disorder (ASD); however, the mechanism by which specific point mutations alter PTEN function is largely unknown. Here, we assessed how ASD-associated single-nucleotide variations in PTEN (ASD-PTEN) affect function.
We used viral-mediated molecular substitution of human PTEN into Pten knockout mouse neurons and assessed neuronal morphology to determine the functional impact of ASD-PTEN. We employed molecular cloning to examine how PTEN's stability, subcellular localization, and catalytic activity affect neuronal growth.
We identified a set of ASD-PTEN mutations displaying altered lipid phosphatase function and subcellular localization. We demonstrated that wild-type PTEN can rescue the neuronal hypertrophy, while PTEN H93R, F241S, D252G, W274L, N276S, and D326N failed to rescue this hypertrophy. A subset of these mutations lacked nuclear localization, prompting us to examine the role of nuclear PTEN in regulating neuronal growth. We found that nuclear PTEN alone is sufficient to regulate soma size. Furthermore, forced localization of the D252G and W274L mutations into the nucleus partially restores regulation of soma size.
ASD-PTEN mutations display decreased stability, catalytic activity, and/or altered subcellular localization. Mutations lacking nuclear localization uncover a novel mechanism whereby lipid phosphatase activity in the nucleus can regulate mammalian target of rapamycin signaling and neuronal growth.
磷酸酶和张力蛋白同源物(PTEN)负调控下游蛋白激酶 B 信号通路,导致细胞生长和增殖减少。PTEN 在自闭症谱系障碍(ASD)儿童的亚群中发生突变;然而,特定点突变改变 PTEN 功能的机制在很大程度上是未知的。在这里,我们评估了 PTEN 中的自闭症相关单核苷酸变异(ASD-PTEN)如何影响功能。
我们使用病毒介导的分子取代将人类 PTEN 转入 Pten 敲除小鼠神经元中,并评估神经元形态,以确定 ASD-PTEN 的功能影响。我们采用分子克隆技术研究 PTEN 的稳定性、亚细胞定位和催化活性如何影响神经元生长。
我们确定了一组表现出改变的脂质磷酸酶功能和亚细胞定位的 ASD-PTEN 突变。我们证明野生型 PTEN 可以挽救神经元肥大,而 PTEN H93R、F241S、D252G、W274L、N276S 和 D326N 未能挽救这种肥大。这些突变中的一部分缺乏核定位,促使我们研究核 PTEN 在调节神经元生长中的作用。我们发现,核 PTEN 本身足以调节体大小。此外,将 D252G 和 W274L 突变强制定位到核内部分恢复了对体大小的调节。
ASD-PTEN 突变显示出降低的稳定性、催化活性和/或改变的亚细胞定位。缺乏核定位的突变揭示了一种新的机制,即核内的脂质磷酸酶活性可以调节哺乳动物雷帕霉素靶蛋白信号和神经元生长。