Suppr超能文献

组织模拟体模和离体动物组织中粘弹性行为的定量表征。

Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

作者信息

Maccabi Ashkan, Shin Andrew, Namiri Nikan K, Bajwa Neha, St John Maie, Taylor Zachary D, Grundfest Warren, Saddik George N

机构信息

Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, United States of America.

Center for Advanced Surgical and Interventional Technology, CASIT, Los Angeles, CA, United States of America.

出版信息

PLoS One. 2018 Jan 26;13(1):e0191919. doi: 10.1371/journal.pone.0191919. eCollection 2018.

Abstract

Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

摘要

软组织的粘弹性通常与病理学相关,因此,已成为可疑组织临床评估中的一项重要诊断指标。外科医生,尤其是在头颈部亚部位的外科医生,通常在术中使用触诊技术来检测肿瘤。然而,这种检测方法主观性很强,往往无法检测到小的或深部的异常。之前已使用振动声成像(VA)及类似方法来区分具有高对比度的组织,但对主要对比机制的深入理解尚未得到验证。鉴于关于各种正常和病变组织粘弹性特性的文献有限,VA图像中组织力学特性的贡献难以得到验证。本文旨在研究粘弹性理论,并详细描述在组织模拟体模(TMPs)和离体组织中获得的粘弹性实验结果,以验证VA及类似成像模式中的主要对比机制。采用球形尖端微压痕技术结合赫兹模型,获取大鼠肝脏和猪肝及胆囊的均匀TMPs和离体组织中弹性模量(E)、长期剪切模量(η)和时间常数(τ)的绝对、定量、点测量值。在猪肝和胆囊组织之间观察到的粘弹性差异表明,利用组织力学特性作为主要对比机制的成像模式有可能在临床环境中用于定量区分相邻器官。这些结果可能有助于更准确的组织建模,并为系统表征和生物医学研究领域增添目前尚无法获得的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/956d/5786325/68644fedb7a1/pone.0191919.g001.jpg

相似文献

1
Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.
PLoS One. 2018 Jan 26;13(1):e0191919. doi: 10.1371/journal.pone.0191919. eCollection 2018.
4
Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
IEEE Trans Med Imaging. 2018 Aug;37(8):1887-1898. doi: 10.1109/TMI.2018.2820157. Epub 2018 Mar 28.
6
Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):3-13. doi: 10.1109/TUFFC.2017.2768184.
7
Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
J Mech Behav Biomed Mater. 2014 Jul;35:132-43. doi: 10.1016/j.jmbbm.2014.03.017. Epub 2014 Apr 1.
8
Nonlinear Characterization of Tissue Viscoelasticity With Acoustoelastic Attenuation of Shear Waves.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jan;69(1):38-53. doi: 10.1109/TUFFC.2021.3105339. Epub 2021 Dec 31.
9
Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues.
J Biomech. 2020 Dec 2;113:110090. doi: 10.1016/j.jbiomech.2020.110090. Epub 2020 Oct 27.
10
Parametric imaging of viscoelasticity using optical coherence elastography.
Phys Med Biol. 2015 Mar 21;60(6):2293-307. doi: 10.1088/0031-9155/60/6/2293. Epub 2015 Feb 26.

引用本文的文献

1
Viscoelastic Modeling of Optic Nerve Head Biomechanics: Effects of Intraocular and Cerebrospinal Fluid Pressure.
Biocybern Biomed Eng. 2025 Jul-Sep;45(3):357-379. doi: 10.1016/j.bbe.2025.05.008. Epub 2025 May 20.
2
Extracellular Matrix Viscoelasticity: A Dynamic Regulator of Cellular Behavior.
Ann Biomed Eng. 2025 Jun 17. doi: 10.1007/s10439-025-03767-2.
3
Mechanical forces amplify TCR mechanotransduction in T cell activation and function.
Appl Phys Rev. 2024 Mar;11(1):011304. doi: 10.1063/5.0166848.
4
Microindentation of fresh soft biological tissue: A rapid tissue sectioning and mounting protocol.
PLoS One. 2024 Feb 29;19(2):e0297618. doi: 10.1371/journal.pone.0297618. eCollection 2024.
6
Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.
J Biomed Opt. 2023 Jul;28(7):075004. doi: 10.1117/1.JBO.28.7.075004. Epub 2023 Jul 21.
8
Advanced injectable hydrogels for bone tissue regeneration.
Biophys Rev. 2023 Apr 13;15(2):223-237. doi: 10.1007/s12551-023-01053-w. eCollection 2023 Apr.
10
Integrating mechanical sensor readouts into organ-on-a-chip platforms.
Front Bioeng Biotechnol. 2022 Dec 16;10:1060895. doi: 10.3389/fbioe.2022.1060895. eCollection 2022.

本文引用的文献

1
Improved identifiability of myocardial material parameters by an energy-based cost function.
Biomech Model Mechanobiol. 2017 Jun;16(3):971-988. doi: 10.1007/s10237-016-0865-3. Epub 2017 Feb 10.
3
Ultrasound Shear Wave Viscoelastography: Model-Independent Quantification of the Complex Shear Modulus.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1399-1408. doi: 10.1109/TUFFC.2016.2583785. Epub 2016 Jun 28.
6
Estimation of passive and active properties in the human heart using 3D tagged MRI.
Biomech Model Mechanobiol. 2016 Oct;15(5):1121-39. doi: 10.1007/s10237-015-0748-z. Epub 2015 Nov 26.
7
Viscoelastic characterization of extraocular Z-myotomy.
Invest Ophthalmol Vis Sci. 2014 Dec 4;56(1):243-51. doi: 10.1167/iovs.14-15510.
8
High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography.
PLoS One. 2014 Oct 22;9(10):e110588. doi: 10.1371/journal.pone.0110588. eCollection 2014.
9
Epidemiologic trends in head and neck cancer and aids in diagnosis.
Oral Maxillofac Surg Clin North Am. 2014 May;26(2):123-41. doi: 10.1016/j.coms.2014.01.001.
10
Atomic force microscopy determination of Young׳s modulus of bovine extra-ocular tendon fiber bundles.
J Biomech. 2014 Jun 3;47(8):1899-903. doi: 10.1016/j.jbiomech.2014.02.011. Epub 2014 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验