Suppr超能文献

将机械传感器读数集成到芯片器官平台中。

Integrating mechanical sensor readouts into organ-on-a-chip platforms.

作者信息

Morales Ingrid Anaya, Boghdady Christina-Marie, Campbell Benjamin E, Moraes Christopher

机构信息

Division of Experimental Medicine, McGill University, Montreal, QC, Canada.

Department of Chemical Engineering, McGill University, Montreal, QC, Canada.

出版信息

Front Bioeng Biotechnol. 2022 Dec 16;10:1060895. doi: 10.3389/fbioe.2022.1060895. eCollection 2022.

Abstract

Organs-on-a-chip have emerged as next-generation tissue engineered models to accurately capture realistic human tissue behaviour, thereby addressing many of the challenges associated with using animal models in research. Mechanical features of the culture environment have emerged as being critically important in designing organs-on-a-chip, as they play important roles in both stimulating realistic tissue formation and function, as well as capturing integrative elements of homeostasis, tissue function, and tissue degeneration in response to external insult and injury. Despite the demonstrated impact of incorporating mechanical cues in these models, strategies to measure these mechanical tissue features in microfluidically-compatible formats directly on-chip are relatively limited. In this review, we first describe general microfluidically-compatible Organs-on-a-chip sensing strategies, and categorize these advances based on the specific advantages of incorporating them on-chip. We then consider foundational and recent advances in mechanical analysis techniques spanning cellular to tissue length scales; and discuss their integration into Organs-on-a-chips for more effective drug screening, disease modeling, and characterization of biological dynamics.

摘要

芯片器官已成为下一代组织工程模型,能够准确模拟真实的人体组织行为,从而解决了在研究中使用动物模型所面临的诸多挑战。培养环境的机械特性在芯片器官的设计中已被证明至关重要,因为它们在刺激真实的组织形成和功能,以及捕捉体内平衡、组织功能和组织退化对外部损伤的综合反应等方面都发挥着重要作用。尽管在这些模型中加入机械信号已显示出其影响,但以微流控兼容形式直接在芯片上测量这些机械组织特征的策略相对有限。在这篇综述中,我们首先描述了一般的微流控兼容芯片器官传感策略,并根据将其集成到芯片上的特定优势对这些进展进行分类。然后,我们考虑了从细胞到组织长度尺度的机械分析技术的基础和最新进展;并讨论了它们在芯片器官中的整合,以实现更有效的药物筛选、疾病建模和生物动力学表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8e/9800895/0c2186b5a5cd/fbioe-10-1060895-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验