Wang Qi, Pirro Philipp, Verba Roman, Slavin Andrei, Hillebrands Burkard, Chumak Andrii V
Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern 67663, Germany.
Institute of Magnetism, Kyiv 03680, Ukraine.
Sci Adv. 2018 Jan 19;4(1):e1701517. doi: 10.1126/sciadv.1701517. eCollection 2018 Jan.
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
自旋波及其量子准粒子磁振子,是未来信号处理系统中有潜力的数据载体,因为与自旋波传播相关的吉尔伯特阻尼可以大幅低于电子设备中的焦耳热损耗。尽管单个自旋波信号处理设备已成功研发,但当前具有挑战性的问题是二维平面集成自旋波电路的形成。通过微磁学建模和解析理论,我们基于两个横向相邻的纳米级自旋波导之间的偶极相互作用,给出了这个问题的有效解决方案。基于此原理开发的器件可作为多功能且动态可重构的信号定向耦合器,实现波导交叉元件、可调功率分配器、频率分离器或复用器的功能。所提出的自旋波定向耦合器设计可用于自旋波计算的数字逻辑电路以及模拟微波信号处理设备。