a Institute of Cellular and Integrative Neurosciences, University of Strasbourg-France , Strasbourg , France.
Cell Adh Migr. 2018 Mar 4;12(2):87-92. doi: 10.1080/19336918.2017.1291481. Epub 2018 Jan 29.
Although it is known for long time that the peripheral nervous system has the capacity for self-regeneration, the molecular mechanisms by which Schwann cells and extracellular matrix (ECM) guide the injured axons to regrow along their original path, remains a poorly understood process. Due to the importance of ECM molecules during development, constitutive mutant organisms display increased lethality, therefore, conditional or inducible strategies have been used to increase the survival of the organisms and allow the study of the role of ECM proteins. In a recent report published in Neuron, Isaacman-Beck and colleagues (2015) used these pioneering genetic studies on zebrafish combined with in vivo fluorescent imaging, to investigate the micro-environmental conditions required for targeted regeneration of the dorsal motor nerve of zebrafish larvae after laser-transection. A candidate gene approach targeting lh3 basal laminar collagen substrates revealed that the lh3 substrate col4α5 regulates dorsal nerve regeneration by destabilizing misdirected axons. Col4α5 was upregulated in a small population of lh3 expressing Schwann cells located ventrally and ventro-laterally to the injury site and found to co-localize with the molecule slit guidance ligand 1 (slit1a). Capitalizing on the crucial observations of mistargeted regeneration of dorsal nerves in mutant larvae, they put forward a model in which Schwann cells shape an environment that allows and directs axonal regeneration to their original synaptic target. In the light of Isaacman-Beck and colleagues (2015) findings, we will review how their study contributes to the research field, and comment on its potential implications for promoting nerve regeneration after injury.
虽然人们早就知道外周神经系统具有自我再生的能力,但 Schwann 细胞和细胞外基质 (ECM) 引导受损轴突沿着其原始路径再生的分子机制仍然是一个了解甚少的过程。由于 ECM 分子在发育过程中的重要性,组成型突变生物体显示出更高的致死率,因此,已经使用条件性或诱导性策略来提高生物体的存活率,并允许研究 ECM 蛋白的作用。在最近发表在《神经元》杂志上的一篇报告中,Isaacman-Beck 及其同事(2015 年)使用这些针对斑马鱼的开创性遗传研究,结合体内荧光成像,研究了激光横切后斑马鱼幼虫背侧运动神经靶向再生所需的微环境条件。针对 lh3 基底膜胶原底物的候选基因方法表明,lh3 底物 col4α5 通过使定向错误的轴突不稳定来调节背神经再生。在损伤部位腹侧和腹外侧的少量表达 lh3 的 Schwann 细胞中上调了 col4α5,并发现它与分子 slit 导向配体 1(slit1a)共定位。利用突变幼虫背神经靶向再生的关键观察结果,他们提出了一个模型,即 Schwann 细胞塑造了一个允许和指导轴突再生到其原始突触靶标的环境。根据 Isaacman-Beck 及其同事(2015 年)的发现,我们将回顾他们的研究如何为该研究领域做出贡献,并评论其对促进损伤后神经再生的潜在影响。