Lopez-Moya Federico, Lopez-Llorca Luis V
Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
J Fungi (Basel). 2016 Mar 3;2(1):11. doi: 10.3390/jof2010011.
Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in Biocontrol fungi such as have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases sporulation and enhances parasitism of plant parasitic nematodes by the fungus. studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.
壳聚糖是一种具有广泛应用的生物聚合物。鉴于可用抗真菌药物数量减少,壳聚糖在临床医学中用于控制诸如 spp. 等真菌病原体感染是其最有前景的应用之一。壳聚糖会增加细胞内氧化应激,进而使敏感丝状真菌和酵母的质膜通透性增加。转录组学研究表明,质膜稳态和氧化代谢基因是真菌对壳聚糖反应中的关键因素。一种脂肪酶和一种单糖转运蛋白(均为内膜蛋白)以及一种谷胱甘肽转移酶是壳聚糖在 中的主要作用靶点。诸如 等生物防治真菌的质膜中多不饱和游离脂肪酸含量较低,对壳聚糖具有抗性。 的基因组测序揭示了一个广泛的降解和同化壳聚糖的基因机制。壳聚糖可增加 的孢子形成,并增强该真菌对植物寄生线虫的寄生作用。 研究有助于了解壳聚糖的作用模式,并推动其作为抗真菌剂和基因调节剂的开发。