Suppr超能文献

3D多层剪纸微结构的制造与变形

Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.

作者信息

Humood Mohammad, Shi Yan, Han Mengdi, Lefebvre Joseph, Yan Zheng, Pharr Matt, Zhang Yihui, Huang Yonggang, Rogers John A, Polycarpou Andreas A

机构信息

Department of Mechanical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843-3123, USA.

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.

出版信息

Small. 2018 Mar;14(11):e1703852. doi: 10.1002/smll.201703852. Epub 2018 Jan 29.

Abstract

Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation.

摘要

具有可控压缩屈曲的机械引导三维微组装代表了一种有前景的新兴途径,可用于制造包括与微电子器件直接相关的单晶硅(Si)在内的多种先进材料中的三维介观结构。在实际应用中,组装好的三维介观结构和微器件通常会承受诸如面外压缩等外部机械载荷,这可能会导致结构/器件的损坏或失效。在此,通过实验和有限元分析相结合的方法,研究了一些机械组装的三维折纸介观结构在平冲头压缩下的力学响应。这些由硅和SU-8环氧树脂双层组成的三维折纸介观结构,是通过将图案化的二维前驱体与预拉伸的弹性体基底在预定的粘结位点整合而形成的,以实现可控的屈曲,从而将它们转变为所需的三维构型。原位扫描电子显微镜测量能够对这些结构的力学行为进行详细研究。通过分析载荷-位移曲线,可以测量各种三维结构的有效刚度和弹性恢复。压缩实验表明,压缩力/位移曲线存在不同的区域,并揭示了结构具有不同的几何形状相关变形。互补的计算模型支持了实验结果,并进一步解释了几何形状相关变形。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验