网络图元回归的研究贡献和协变量分布图。
Graphs of study contributions and covariate distributions for network meta-regression.
机构信息
Department of Biostatistics, Waterhouse Building, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.
出版信息
Res Synth Methods. 2018 Jun;9(2):243-260. doi: 10.1002/jrsm.1292. Epub 2018 Feb 14.
BACKGROUND
Meta-regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta-regression (NMR) models, which include covariates in network meta-analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation.
METHODS
We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate-contribution plot, heat plot, contribution-NMR plot, and heat-NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year.
RESULTS
For the malaria dataset, no contributing trials had an average age between 7-25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954-1959 for most comparisons therefore, within this range, results would be extrapolated.
CONCLUSIONS
Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.
背景
元回归结果的解释必须考虑纳入研究的协变量值范围。基于插值或外推的结果可能不可靠。在包括网络荟萃分析中的协变量的网络荟萃回归(NMR)模型中,使用直接和间接证据来估计结果;因此,可能不清楚哪些研究和协变量值对哪个结果有贡献。我们提出了一些图表来帮助理解哪些试验和协变量值对每个 NMR 结果有贡献,并突出外推或插值。
方法
我们介绍了计算每个试验和协变量值对每个结果的贡献的方法,并将其与现有的方法进行了比较。我们展示了如何构建图表,包括网络协变量分布图、协变量贡献图、热图、贡献-NMR 图和热-NMR 图。我们使用疟疾治疗的协变量平均年龄数据集和预防龋齿的局部氟化物干预的协变量随机化年份数据集来演示这些方法。
结果
对于疟疾数据集,没有贡献的试验的平均年龄在 7-25 岁之间,因此在这个范围内进行了插值。对于氟化物数据集,大多数比较的随机化年份在 1954-1959 年之间,因此在这个范围内,结果将是外推的。
结论
即使在一个完全连接的网络中,NMR 结果也可能是根据协变量范围比整个数据集范围更窄的试验来估计的。计算贡献并以图形方式显示它们有助于通过突出显示外推或插值结果来解释 NMR 结果。