Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
Pharmacometrics, Pfizer Ltd, Kent, UK.
Res Synth Methods. 2019 Jun;10(2):267-286. doi: 10.1002/jrsm.1351. Epub 2019 May 29.
Model-based meta-analysis (MBMA) is increasingly used to inform drug-development decisions by synthesising results from multiple studies to estimate treatment, dose-response, and time-course characteristics. Network meta-analysis (NMA) is used in Health Technology Appraisals for simultaneously comparing effects of multiple treatments, to inform reimbursement decisions. Recently, a framework for dose-response model-based network meta-analysis (MBNMA) has been proposed that combines, often nonlinear, MBMA modelling with the statistically robust properties of NMA. Here, we aim to extend this framework to time-course models.
We propose a Bayesian time-course MBNMA modelling framework for continuous summary outcomes that allows for nonlinear modelling of multiparameter time-course functions, accounts for residual correlation between observations, preserves randomisation by modelling relative effects, and allows for testing of inconsistency between direct and indirect evidence on the time-course parameters. We demonstrate our modelling framework using an illustrative dataset of 23 trials investigating treatments for pain in osteoarthritis.
Of the time-course functions that we explored, the E model gave the best fit to the data and has biological plausibility. Some simplifying assumptions were needed to identify the ET , due to few observations at early follow-up times. Treatment estimates were robust to the inclusion of correlations in the likelihood.
Time-course MBNMA provides a statistically robust framework for synthesising evidence on multiple treatments at multiple time points. The use of placebo-controlled studies in drug-development means there is limited potential for inconsistency. The methods can inform drug-development decisions and provide the rigour needed in the reimbursement decision-making process.
基于模型的荟萃分析(MBMA)越来越多地被用于通过综合多项研究的结果来估计治疗、剂量反应和时间过程特征,从而为药物开发决策提供信息。网络荟萃分析(NMA)用于同时比较多种治疗效果的卫生技术评估,为报销决策提供信息。最近,提出了一种基于剂量反应模型的网络荟萃分析(MBNMA)框架,该框架将通常是非线性的 MBMA 建模与 NMA 的统计稳健特性相结合。在这里,我们旨在将该框架扩展到时间过程模型。
我们提出了一种用于连续汇总结果的贝叶斯时间过程 MBNMA 建模框架,该框架允许对多参数时间过程函数进行非线性建模,考虑到观察值之间的剩余相关性,通过对相对效应进行建模来保留随机化,并允许对时间过程参数的直接和间接证据之间的不一致性进行检验。我们使用一个 23 项关节炎疼痛治疗试验的说明性数据集来演示我们的建模框架。
在我们探索的时间过程函数中,E 模型最适合数据且具有生物学合理性。由于早期随访时间的观察值较少,因此需要对 ET 进行一些简化假设。治疗估计值对似然函数中相关性的包含具有稳健性。
时间过程 MBNMA 为在多个时间点综合多种治疗的证据提供了一个统计稳健的框架。药物开发中使用安慰剂对照研究意味着不一致的可能性有限。该方法可以为药物开发决策提供信息,并为报销决策过程提供所需的严谨性。