DeLong Robert K, Mitchell Jennifer A, Morris R Tyler, Comer Jeffrey, Hurst Miranda N, Ghosh Kartik, Wanekaya Adam, Mudge Miranda, Schaeffer Ashley, Washington Laurie L, Risor-Marhanka Azure, Thomas Spencer, Marroquin Shanna, Lekey Amber, Smith Joshua J, Garrad Richard, Aryal Santosh, Abdelhakiem Mohamed, Glaspell Garry P
J Biomed Nanotechnol. 2017 Feb;13(2):221-31. doi: 10.1166/jbn.2017.2336.
Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes. Melanoma specific killing was in the order; ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO, ZnO-NP inhibiting B16F10 and A375 cells as well as ERK enzyme (>90%) and several other cancer-associated kinases (AKT, CREB, p70S6K). ZnO-NP or nanobelt (NB) serve as photoluminescence (PL) cell labels and inhibit 3-D multi-cellular tumor spheroid (MCTS) growth and were tested in a mouse melanoma model. These results demonstrate nanoparticle and enzyme specific biochemical activity and suggest their utility as new tools to explore the important model metastatic foci 3-D environment and their chemotherapeutic potential.
金属和金属氧化物纳米颗粒在生物医学领域的应用正在迅速增加。在此,对它们对两种特性明确的模型酶,即荧光素酶(Luc)或β-半乳糖苷酶(β-Gal)的功能影响进行了定量比较。氧化镍纳米颗粒(NiO-NP)激活了β-Gal(比对照高>400%),而碳化硼纳米颗粒(B4C-NP)抑制了Luc(<对照的10%),氧化锌(ZnO-NP)和氧化钴(Co3O4-NP)对β-Gal的激活程度较小,氧化镁(MgO)则适度抑制了这两种酶。黑色素瘤特异性杀伤作用的顺序为:ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO,ZnO-NP抑制B16F10和A375细胞以及ERK酶(>90%)和其他几种癌症相关激酶(AKT、CREB、p70S6K)。ZnO-NP或纳米带(NB)可作为光致发光(PL)细胞标记物,抑制三维多细胞肿瘤球体(MCTS)的生长,并在小鼠黑色素瘤模型中进行了测试。这些结果证明了纳米颗粒和酶的特异性生化活性,并表明它们作为探索重要模型转移灶三维环境及其化疗潜力的新工具的实用性。